Nigrostriatal dopamine-independent resting-state functional networks in Parkinson's disease

2016 ◽  
Vol 22 ◽  
pp. e163
Author(s):  
Phil Hyu Lee ◽  
Jong Sam Baik ◽  
Young Ho Sohn
NeuroImage ◽  
2015 ◽  
Vol 119 ◽  
pp. 296-304 ◽  
Author(s):  
Jee Hyun Ham ◽  
Jungho Cha ◽  
Jae Jung Lee ◽  
Gwang-Min Baek ◽  
Mun Kyung Sunwoo ◽  
...  

2020 ◽  
Vol 34 (9) ◽  
pp. 795-803
Author(s):  
Amgad Droby ◽  
Inbal Maidan ◽  
Yael Jacob ◽  
Nir Giladi ◽  
Jeffrey M. Hausdorff ◽  
...  

Background. Nigrostriatal dopaminergic loss is a hallmark of Parkinson’s disease (PD) pathophysiology, leading to motor Parkinsonism. Different intervention protocols have shown that motor and cognitive functions improvement in PD occur via the modulation of distinct motor and cognitive pathways. Objective. To investigate the effects of two motor training programs on the brains’ functional networks in PD patients. Methods. Thirty-seven PD patients were prospectively studied. All enrolled patients underwent either treadmill training (TT) (n = 19) or treadmill with virtual reality (TT + VR) (n = 18) for 6 weeks. Magnetic resonance imaging (MRI) scans (3 T) acquiring 3-dimensional T1-weighted and resting-state functional MRI (rs-fMRI) data sets were performed at baseline and after 6 weeks. Independent component analysis (ICA) was conducted, and functional connectivity (FC) changes within large-scale functional brain networks were examined. Results. In both groups, significant post-training FC decrease in striatal, limbic, and parietal regions within the basal ganglia network, executive control network, and frontal-striatal network, and significant FC increase in the caudate, and cingulate within the sensorimotor network (SMN) were observed. Moreover, a significant time × group interaction was detected where TT + VR training had greater effects on FC levels in the supplementary motor area (SMA) and right precentral gyrus within the SMN, and in the right middle frontal gyrus (MFG) within the cerebellar network. These FC alterations were associated with improved usual and dual-task walking performance. Conclusions. These results suggest that TT with-and-without the addition of a VR component affects distinct neural pathways, highlighting the potential for beneficial neural plasticity in PD. Such distinctive task-specific pathways may foster the facilitation of interventions tailored to the individual needs of PD patients. Registered at Clinicaltrials.gov number: NCT01732653.


2018 ◽  
Vol 52 ◽  
pp. 49-54 ◽  
Author(s):  
Yoonju Lee ◽  
Yeong-Hun Park ◽  
Jae Jung Lee ◽  
Young H. Sohn ◽  
Jong-Min Lee ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0141815 ◽  
Author(s):  
Linqiong Sang ◽  
Jiuquan Zhang ◽  
Li Wang ◽  
Jingna Zhang ◽  
Ye Zhang ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nicholas D’Cruz ◽  
Griet Vervoort ◽  
Sima Chalavi ◽  
Bauke W. Dijkstra ◽  
Moran Gilat ◽  
...  

AbstractThe onset of freezing of gait (FOG) in Parkinson’s disease (PD) is a critical milestone, marked by a higher risk of falls and reduced quality of life. FOG is associated with alterations in subcortical neural circuits, yet no study has assessed whether subcortical morphology can predict the onset of clinical FOG. In this prospective multimodal neuroimaging cohort study, we performed vertex-based analysis of grey matter morphology in fifty-seven individuals with PD at study entry and two years later. We also explored the behavioral correlates and resting-state functional connectivity related to these local volume differences. At study entry, we found that freezers (N = 12) and persons who developed FOG during the course of the study (converters) (N = 9) showed local inflations in bilateral thalamus in contrast to persons who did not (non-converters) (N = 36). Longitudinally, converters (N = 7) also showed local inflation in the left thalamus, as compared to non-converters (N = 36). A model including sex, daily levodopa equivalent dose, and local thalamic inflation predicted conversion with good accuracy (AUC: 0.87, sensitivity: 88.9%, specificity: 77.8%). Exploratory analyses showed that local thalamic inflations were associated with larger medial thalamic sub-nuclei volumes and better cognitive performance. Resting-state analyses further revealed that converters had stronger thalamo-cortical coupling with limbic and cognitive regions pre-conversion, with a marked reduction in coupling over the two years. Finally, validation using the PPMI cohort suggested FOG-specific non-linear evolution of thalamic local volume. These findings provide markers of, and deeper insights into conversion to FOG, which may foster earlier intervention and better mobility for persons with PD.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172394 ◽  
Author(s):  
Robert Westphal ◽  
Camilla Simmons ◽  
Michel B. Mesquita ◽  
Tobias C. Wood ◽  
Steve C. R. Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document