Predicting Parkinson's disease using gradient boosting decision tree models with electroencephalography signals

Author(s):  
Seung-Bo Lee ◽  
Yong-Jeong Kim ◽  
Sungeun Hwang ◽  
Hyoshin Son ◽  
Sang Kun Lee ◽  
...  
PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3092 ◽  
Author(s):  
Shih-Hsiung Liang ◽  
Bruno Andreas Walther ◽  
Bao-Sen Shieh

Background Biological invasions have become a major threat to biodiversity, and identifying determinants underlying success at different stages of the invasion process is essential for both prevention management and testing ecological theories. To investigate variables associated with different stages of the invasion process in a local region such as Taiwan, potential problems using traditional parametric analyses include too many variables of different data types (nominal, ordinal, and interval) and a relatively small data set with too many missing values. Methods We therefore used five decision tree models instead and compared their performance. Our dataset contains 283 exotic bird species which were transported to Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction success); of these 95 introduced species, 36 species reproduced in the field of Taiwan successfully (establishment success). For each species, we collected 22 variables associated with human selectivity and species traits which may determine success during the introduction stage and establishment stage. For each decision tree model, we performed three variable treatments: (I) including all 22 variables, (II) excluding nominal variables, and (III) excluding nominal variables and replacing ordinal values with binary ones. Five performance measures were used to compare models, namely, area under the receiver operating characteristic curve (AUROC), specificity, precision, recall, and accuracy. Results The gradient boosting models performed best overall among the five decision tree models for both introduction and establishment success and across variable treatments. The most important variables for predicting introduction success were the bird family, the number of invaded countries, and variables associated with environmental adaptation, whereas the most important variables for predicting establishment success were the number of invaded countries and variables associated with reproduction. Discussion Our final optimal models achieved relatively high performance values, and we discuss differences in performance with regard to sample size and variable treatments. Our results showed that, for both the establishment model and introduction model, the number of invaded countries was the most important or second most important determinant, respectively. Therefore, we suggest that future success for introduction and establishment of exotic birds may be gauged by simply looking at previous success in invading other countries. Finally, we found that species traits related to reproduction were more important in establishment models than in introduction models; importantly, these determinants were not averaged but either minimum or maximum values of species traits. Therefore, we suggest that in addition to averaged values, reproductive potential represented by minimum and maximum values of species traits should be considered in invasion studies.


Neurology ◽  
2001 ◽  
Vol 56 (Supplement 5) ◽  
pp. S1-S88 ◽  
Author(s):  
C. W. Olanow ◽  
R. L. Watts ◽  
W. C. Koller

2013 ◽  
Vol 23 (6) ◽  
pp. 1459-1466 ◽  
Author(s):  
Shalini Rajandran Nair ◽  
Li Kuo Tan ◽  
Norlisah Mohd Ramli ◽  
Shen Yang Lim ◽  
Kartini Rahmat ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Ibrahim Karabayir ◽  
Liam Butler ◽  
Samuel M. Goldman ◽  
Rishikesan Kamaleswaran ◽  
Fatma Gunturkun ◽  
...  

Background: Parkinson’s disease (PD) is a chronic, disabling neurodegenerative disorder. Objective: To predict a future diagnosis of PD using questionnaires and simple non-invasive clinical tests. Methods: Participants in the prospective Kuakini Honolulu-Asia Aging Study (HAAS) were evaluated biannually between 1995–2017 by PD experts using standard diagnostic criteria. Autopsies were sought on all deaths. We input simple clinical and risk factor variables into an ensemble-tree based machine learning algorithm and derived models to predict the probability of developing PD. We also investigated relationships of predictive models and neuropathologic features such as nigral neuron density. Results: The study sample included 292 subjects, 25 of whom developed PD within 3 years and 41 by 5 years. 116 (46%) of 251 subjects not diagnosed with PD underwent autopsy. Light Gradient Boosting Machine modeling of 12 predictors correctly classified a high proportion of individuals who developed PD within 3 years (area under the curve (AUC) 0.82, 95%CI 0.76–0.89) or 5 years (AUC 0.77, 95%CI 0.71–0.84). A large proportion of controls who were misclassified as PD had Lewy pathology at autopsy, including 79%of those who died within 3 years. PD probability estimates correlated inversely with nigral neuron density and were strongest in autopsies conducted within 3 years of index date (r = –0.57, p <  0.01). Conclusion: Machine learning can identify persons likely to develop PD during the prodromal period using questionnaires and simple non-invasive tests. Correlation with neuropathology suggests that true model accuracy may be considerably higher than estimates based solely on clinical diagnosis.


Author(s):  
Nazri Mohd Nawi ◽  
Mokhairi Makhtar ◽  
Zehan Afizah Afip ◽  
Mohd Zaki Salikon

Parkinson’s disease (PD) among Alzheimer’s and epilepsy are one of the most common neurological disorders which appreciably affect not only live of patients but also their households. According to the current trend of aging social behaviour, it is expected to see a rise of Parkinson’s disease. Even though there is no cure for PD, a proper medication at the early stage can help significantly in alleviating the symptoms. Since, the traditional method for identifying PD is rather invasive, expansive and complicated for self-use, there is a high demand for using classification method on PD detection. This paper compares the performance of Neural Network and decision tree for classifying and discriminating healthy people for people with Parkinson’s disease (PD) by distinguishing dysphonia. The simulation results demonstrate that Neural Network outperformed decision tree by giving accurate results with 87% accuracy as compared to decision tree with only 84% accuracy in determining the classification of healthy and people with Parkinson’s.


Sign in / Sign up

Export Citation Format

Share Document