Improved yield of a ligand-binding GPCR expressed in E. coli for structural studies

2009 ◽  
Vol 64 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Helen Attrill ◽  
Peter J. Harding ◽  
Eleanor Smith ◽  
Simon Ross ◽  
Anthony Watts
Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


2012 ◽  
Vol 302 (9) ◽  
pp. C1293-C1305 ◽  
Author(s):  
Monica Sala-Rabanal ◽  
Bruce A. Hirayama ◽  
Donald D. F. Loo ◽  
Vincent Chaptal ◽  
Jeff Abramson ◽  
...  

The Na+-glucose cotransporter hSGLT1 is a member of a class of membrane proteins that harness Na+ electrochemical gradients to drive uphill solute transport. Although hSGLT1 belongs to one gene family (SLC5), recent structural studies of bacterial Na+ cotransporters have shown that Na+ transporters in different gene families have the same structural fold. We have constructed homology models of hSGLT1 in two conformations, the inward-facing occluded (based on vSGLT) and the outward open conformations (based on Mhp1), mutated in turn each of the conserved gates and ligand binding residues, expressed the SGLT1 mutants in Xenopus oocytes, and determined the functional consequences using biophysical and biochemical assays. The results establish that mutating the ligand binding residues produces profound changes in the ligand affinity (the half-saturation concentration, K0.5); e.g., mutating sugar binding residues increases the glucose K0.5 by up to three orders of magnitude. Mutation of the external gate residues increases the Na+ to sugar transport stoichiometry, demonstrating that these residues are critical for efficient cotransport. The changes in phlorizin inhibition constant ( Ki) are proportional to the changes in sugar K0.5, except in the case of F101C, where phlorizin Ki increases by orders of magnitude without a change in glucose K0.5. We conclude that glucose and phlorizin occupy the same binding site and that F101 is involved in binding to the phloretin group of the inhibitor. Substituted-cysteine accessibility methods show that the cysteine residues at the position of the gates and sugar binding site are largely accessible only to external hydrophilic methanethiosulfonate reagents in the presence of external Na+, demonstrating that the external sugar (and phlorizin) binding vestibule is opened by the presence of external Na+ and closes after the binding of sugar and phlorizin. Overall, the present results provide a bridge between kinetics and structural studies of cotransporters.


Biochemistry ◽  
2002 ◽  
Vol 41 (39) ◽  
pp. 11901-11913 ◽  
Author(s):  
Yi Cheng ◽  
Tong-Jian Shen ◽  
Virgil Simplaceanu ◽  
Chien Ho

2013 ◽  
Vol 19 (29) ◽  
pp. 9526-9533 ◽  
Author(s):  
Audrey Hottin ◽  
Daniel W. Wright ◽  
Agata Steenackers ◽  
Philippe Delannoy ◽  
Faustine Dubar ◽  
...  

1993 ◽  
Vol 289 (1) ◽  
pp. 81-85 ◽  
Author(s):  
J Quinn ◽  
A G Diamond ◽  
A K Masters ◽  
D E Brookfield ◽  
N G Wallis ◽  
...  

The dihydrolipoamide acetyltransferase subunit (E2p) of mammalian pyruvate dehydrogenase complex has two highly conserved lipoyl domains each modified with a lipoyl cofactor bound in amide linkage to a specific lysine residue. A sub-gene encoding the inner lipoyl domain of human E2p has been over-expressed in Escherichia coli. Two forms of the domain have been purified, corresponding to lipoylated and non-lipoylated species. The apo-domain can be lipoylated in vitro with partially purified E. coli lipoate protein ligase, and the lipoylated domain can be reductively acetylated by human E1p (pyruvate dehydrogenase). Availability of the two forms will now allow detailed biochemical and structural studies of the human lipoyl domains.


Sign in / Sign up

Export Citation Format

Share Document