Dmt-Tic-NH-CH2-Bid (UFP-502), a potent DOP receptor agonist: In vitro and in vivo studies

Peptides ◽  
2006 ◽  
Vol 27 (12) ◽  
pp. 3322-3330 ◽  
Author(s):  
Raffaella Vergura ◽  
Elena Valenti ◽  
Christopher P. Hebbes ◽  
Elaine C. Gavioli ◽  
Barbara Spagnolo ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2063-2063 ◽  
Author(s):  
Teresa Sellers ◽  
Timothy Hart ◽  
Michael Semanik ◽  
Krishna Murthy

Abstract SB 497115-GR is a small molecular weight Tpo receptor (TpoR) agonist that has properties similar to thrombopoietin (TPO), primarily inducing proliferation and differentiation of megakaryocytes from bone marrow progenitor cells. SB-497115-GR is being developed for the treatment of thrombocytopenias, such as immune thrombocytopenic purpura. In vitro and in vivo studies have demonstrated that SB-497115-GR has very distinct species specificity. SB-497115 or other molecules in this class induced dose dependent STAT activation in platelets from humans and chimpanzees but not in platelets from laboratory animal species commonly used in drug safety studies. In order to demonstrate in vivo activity of SB-497115-GR, a single dose and 5 daily dose pharmacology and safety study in chimpanzees was conducted. To support initiation of clinical trials, a comprehensive package of toxicology studies was conducted including studies up to 14 days duration in rats and dogs. All procedures involving the care and use of animals in these studies were reviewed and approved by the appropriate Institutional Animal Care and Use Committees. Female chimpanzees (1–3/group) were administered vehicle or SB-497115-GR at doses of 0.1 to 10 mg/kg/day by oral gavage. For toxicology studies, SB-497115-GR was administered orally to rats (10/sex/group) by gavage at doses of 3 to 40 mg/kg/day and to dogs (3/sex/group) by capsule at doses of 3 to 30 mg/kg/day for 14 days. SB-497115-GR was well tolerated in chimpanzees, rats and dogs at all doses tested. In chimpanzees, no treatment related increases in platelet counts were observed after administration of single doses of up to 10 mg/kg or 5 daily doses of up to 3 mg/kg/day. However, following 5 daily doses of 10 mg/kg/day SB-497115-GR, there was a 1.3- to 2.4-fold increase in circulating platelet counts in 3 chimpanzees. A similar change in reticulated platelet counts was observed preceding this increase. In contrast, there was no effect of treatment for up to 14 days on platelet counts in rats or dogs. In conclusion, SB-497115-GR, an orally bioavailable small molecular weight agonist of the TpoR, has been shown to increase platelet counts in chimpanzees. These in vivo data confirm the in vitro data demonstrating the unique species-specific effects of this novel Tpo receptor agonist on platelets and were predictive of a pharmacodynamic effect currently being observed in human clinical trials.


2016 ◽  
Vol 102 ◽  
pp. 276-294 ◽  
Author(s):  
Helena Domin ◽  
Łukasz Przykaza ◽  
Danuta Jantas ◽  
Ewa Kozniewska ◽  
Paweł M. Boguszewski ◽  
...  

2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document