ara h 2
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 39)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 837
Author(s):  
Sudip Biswas ◽  
Nancy J. Wahl ◽  
Michael J. Thomson ◽  
John M. Cason ◽  
Bill F. McCutchen ◽  
...  

The cultivated peanut (Arachis hypogaea L.) is a legume consumed worldwide in the form of oil, nuts, peanut butter, and candy. Improving peanut production and nutrition will require new technologies to enable novel trait development. Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR–Cas9) is a powerful and versatile genome-editing tool for introducing genetic changes for studying gene expression and improving crops, including peanuts. An efficient in vivo transient CRISPR–Cas9- editing system using protoplasts as a testbed could be a versatile platform to optimize this technology. In this study, multiplex CRISPR–Cas9 genome editing was performed in peanut protoplasts to disrupt a major allergen gene with the help of an endogenous tRNA-processing system. In this process, we successfully optimized protoplast isolation and transformation with green fluorescent protein (GFP) plasmid, designed two sgRNAs for an allergen gene, Ara h 2, and tested their efficiency by in vitro digestion with Cas9. Finally, through deep-sequencing analysis, several edits were identified in our target gene after PEG-mediated transformation in protoplasts with a Cas9 and sgRNA-containing vector. These findings demonstrated that a polyethylene glycol (PEG)-mediated protoplast transformation system can serve as a rapid and effective tool for transient expression assays and sgRNA validation in peanut.


Author(s):  
Xuejiao Chang ◽  
Xiaoya Zhou ◽  
Yu Tang ◽  
Ying Zhang ◽  
Juanli Yuan ◽  
...  
Keyword(s):  

Author(s):  
Mona Al-Ahmad ◽  
Edin Jusufovic ◽  
Nermina Arifhodzic ◽  
Tito Rodriguez-Bouza

<b><i>Introduction:</i></b> There is limited knowledge on the sensitization patterns to peanut proteins and food allergy in the Middle East. The objective of this study is to analyze the relationship between sensitization patterns to peanut proteins and clinical symptoms in a group of patients with physician-diagnosed peanut allergy (PA) in Kuwait. <b><i>Methods:</i></b> PA patients were evaluated by the skin prick test (SPT), serum total IgE, peanut-specific IgE (sIgE), and sIgE against Ara h 1–3, 8, and 9, and clinical data were collected. <b><i>Results:</i></b> Sixty-nine patients were included. A positive correlation between peanut SPT and sIgE was detected for all 3 storage proteins (Ara h 1–3) in patients &#x3c;6 years old and for Ara h 1 and 2 in older patients. ROC analysis of positive correlations showed that oral food challenge should be considered for definite diagnosis of PA only if the level of Ara h 2 is &#x3c;22.25 KUA/L, with level of Ara h 2 ≥15.4 allowing the detection of systemic reactions with a sensitivity of 55.56%. Patients presenting with systemic reactions more frequently had positive Ara h 1 (88.9%) and Ara h 2 (83.3%), compared with 44.1% and 52.9% in those with local reaction (<i>p</i> = 0.0046 and <i>p</i> = 0.0378). The levels of Ara h 1 and 2 were also significantly higher in patients with systemic reactions compared to those with a local reaction, with those differences being especially relevant for Ara h 2 (15.9 vs. 0.4) (<i>p</i> = 0.0005). <b><i>Conclusions:</i></b> The pattern of sensitization to peanut proteins in the Middle East is similar to that of the Western world. Measurement of sIgE antibodies to Ara h 1, 2, and 3 is useful in the diagnosis of PA and in the investigation of reactions to raw and roasted peanuts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Öykü Üzülmez ◽  
Tanja Kalic ◽  
Vanessa Mayr ◽  
Nina Lengger ◽  
Angelika Tscheppe ◽  
...  

Peanut allergy is a potentially life-threatening disease that is mediated by allergen-specific immunoglobulin E (IgE) antibodies. The major peanut allergen Ara h 2, a 2S albumin seed storage protein, is one of the most dangerous and potent plant allergens. Ara h 2 is posttranslationally modified to harbor four disulfide bridges and three hydroxyprolines. These hydroxyproline residues are required for optimal IgE-binding to the DPYSPOHS motifs representing an immunodominant IgE epitope. So far, recombinant Ara h 2 has been produced in Escherichia coli, Lactococcus lactis, Trichoplusia ni insect cell, and Chlamydomonas reinhardtii chloroplast expression systems, which were all incapable of proline hydroxylation. However, molecular diagnosis of peanut allergy is performed using either natural or E. coli-produced major peanut allergens. As IgE from the majority of patients is directed to Ara h 2, it is of great importance that the recombinant Ara h 2 harbors all of its eukaryotic posttranslational modifications. We produced hydroxyproline-containing and correctly folded Ara h 2 in the endoplasmic reticulum of leaf cells of Nicotiana benthamiana plants, using the plant virus-based magnICON® transient expression system with a yield of 200 mg/kg fresh biomass. To compare prokaryotic with eukaryotic expression methods, Ara h 2 was expressed in E. coli together with the disulfide-bond isomerase DsbC and thus harbored disulfide bridges but no hydroxyprolines. The recombinant allergens from N. benthamiana and E. coli were characterized and compared to the natural Ara h 2 isolated from roasted peanuts. Natural Ara h 2 outperformed both recombinant proteins in IgE-binding and activation of basophils via IgE cross-linking, the latter indicating the potency of the allergen. Interestingly, significantly more efficient IgE cross-linking by the N. benthamiana-produced allergen was observed in comparison to the one induced by the E. coli product. Ara h 2 from N. benthamiana plants displayed a higher similarity to the natural allergen in terms of basophil activation due to the presence of hydroxyproline residues, supporting so far published data on their contribution to the immunodominant IgE epitope. Our study advocates the use of N. benthamiana plants instead of prokaryotic expression hosts for the production of the major peanut allergen Ara h 2.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
H. K. Brand ◽  
M. W. J. Schreurs ◽  
J. A. M. Emons ◽  
R. Gerth van Wijk ◽  
H. de Groot ◽  
...  

Abstract Background Specific IgE (sIgE) against the peanut component Arachis hypogaea (Ara h) 2 has been shown to be the most important allergen to discriminate between peanut allergy and peanut tolerance. Several studies determined sIgE cut off values for Ara h 2, determined by singleplex measurements. However, cut off values for Ara h 2 from multiplex arrays are less well defined. The aim of this study was to evaluate the correlation between Ara h 2 sIgE determined by singleplex versus multiplex measurements and to assess the diagnostic value of the different peanut components included in Immuno Solid-phase Allergen Chip (ISAC) multiplex analysis in children with a suspected peanut allergy. Methods In this retrospective study we analyzed Ara h 2 sIgE values with singleplex Fluorescence Enzyme Immunoassay (FEIA, ImmunoCap) and multiplex microarray (ISAC) measurements in 117 children with a suspected peanut allergy. Also, other peanut components measured by ISAC were analyzed. Double blinded placebo controlled oral food challenges were used as golden standard. Results Among all studied peanut components FEIA Ara h 2 sIgE showed the highest area under the curve (AUC, 0.922), followed by ISAC Ara h 6 and Ara h 2 sIgE with AUCs of respectively 0.906 and 0.902. Best cut off values to diagnose peanut allergy were 4.40 kU/l for FEIA Ara h 2 sIgE and, 7.43 ISU and 8.13 ISU for respectively Ara h 2 and Ara h 6 sIgE in ISAC microarray. Ara h 2 sIgE determined in FEIA and ISAC showed a good correlation (r = 0.88; p < 0.01). Conclusion Ara h 6 and Ara h 2 sIgE in multiplex ISAC are both good predictors of clinical peanut allergy in Dutch children, and their performance is comparable to the use of Ara h 2 in singleplex FEIA. The simultaneous measurement of different peanut components using ISAC is an advantage and clinically useful to detect peanut allergic children that are Ara h 2 negative but sensitized to other peanut proteins such as Ara h 6.


Author(s):  
Hannah M. Kansen ◽  
Francine C. van Erp ◽  
Yolanda Meijer ◽  
Dianne M.W. Gorissen ◽  
Marike Stadermann ◽  
...  

2021 ◽  
Author(s):  
Erin C Steinbach ◽  
Johanna M Smeekens ◽  
Satyaki Roy ◽  
Takahiko Toyonaga ◽  
Caleb Cornaby ◽  
...  

Peanut allergy reaction severity correlates with increased intestinal epithelial cell (IEC) barrier permeability. CC027/GeniUnc mice develop peanut allergy by intragastric administration of peanut proteins without adjuvant. We report that peanut-allergic CC027/GeniUnc mice showed increased IEC barrier permeability and systemic peanut allergen Ara h 2 after challenge. Jejunal epithelial cell transcriptomics showed effects of peanut allergy on IEC proliferation, survival, and metabolism, and revealed IEC-predominant angiopoietin like-4 (Angptl4) as a unique feature of CC027/GeniUnc peanut allergy. CC027/GeniUnc mice and peanut-allergic pediatric patients demonstrated significantly higher serum Angptl4 and ANGPTL4 compared to control C3H/HeJ mice and non-peanut-allergic but atopic patients, respectively, highlighting its potential as a biomarker of peanut allergy.


2021 ◽  
Author(s):  
Kim Brand ◽  
Marco Schreurs ◽  
Joyce Emons ◽  
Roy Gerth van Wijk ◽  
Hans de Groot ◽  
...  

Abstract BackgroundSpecific IgE (sIgE) against the peanut component Arachis hypogaea (Ara h) 2 has been shown to be the most important allergen to discriminate between peanut allergy and peanut tolerance. Several studies determined sIgE cut off values for Ara h 2, determined by singleplex measurements. However, cut off values for Ara h 2 from multiplex arrays are less well defined. The aim of this study was to evaluate the correlation between Ara h 2 sIgE determined by singleplex versus multiplex measurements and to assess the diagnostic value of the different peanut components included in Immuno Solid-phase Allergen Chip (ISAC) multiplex analysis in children with a suspected peanut allergy.Methods In this retrospective study we analyzed Ara h 2 sIgE values with singleplex Fluorescence Enzyme Immunoassay (FEIA, ImmunoCap) and multiplex microarray (ISAC) measurements in 117 children with a suspected peanut allergy. Also, other peanut components measured by ISAC were analyzed. Double blinded placebo controlled oral food challenges were used as golden standard.Results Among all studied peanut components FEIA Ara h 2 sIgE showed the highest area under the curve (AUC, 0.922), followed by ISAC Ara h 6 and Ara h 2 sIgE with AUCs of respectively 0,906 and 0,902. Best cut off values to diagnose peanut allergy were 4.40 kU/l for FEIA Ara h 2 sIgE and, 7.43 ISU and 8.13 ISU for respectively Ara h 2 and Ara h 6 sIgE in ISAC microarray. Ara h 2 sIgE determined in FEIA and ISAC showed a good correlation (r=0.88. p<0.01). ConclusionAra h 6 and Ara h 2 sIgE in multiplex ISAC are both good predictors of clinical peanut allergy, and their performance is comparable to the use of Ara h 2 in singleplex FEIA. The simultaneous measurement of Ara h 6 and Ara h 2 sIgE using ISAC is an advantage and clinically useful to detect peanut allergic children that are monosensitized to Ara h 6.


2021 ◽  
Vol 147 (2) ◽  
pp. AB89
Author(s):  
Nicole Canon ◽  
Catherine Schein ◽  
Xueni Chen ◽  
Marina Pozzoli ◽  
Vidhya Pathy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document