Effects of in-situ stress regime and intact rock strength parameters on the hydraulic fracturing

2013 ◽  
Vol 108 ◽  
pp. 211-221 ◽  
Author(s):  
Mohammad Javad Nasehi ◽  
Ali Mortazavi
2012 ◽  
Vol 616-618 ◽  
pp. 435-440
Author(s):  
Yan Jun Feng ◽  
Xiu Wei Shi

This paper presents results of a comprehensive study involving analytical and field experimental investigations into the factors controlling the hydraulic fracturing process. Analytical theories for fracture initiation of vertical and horizontal borehole are reviewed. The initiation and propagation process of hydraulic fracturing is performed in the field by means of hydraulic fracturing and stepwise hydraulic fracturing, the effect of factors such as in-situ stress and rock strength on fracture propagation process is studied and discussed. The fracture initiation pressures estimated from the analytical model and field experiments are compared as well as the fracturing process during case 1and case 2. Results from the analytical model and field experiments conducted in this study are interpreted with a particular effort to enlighten the factors controlling the hydraulic fracturing process.


2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


2015 ◽  
Vol 802 ◽  
pp. 16-21 ◽  
Author(s):  
Romziah Azit ◽  
Mohd Ashraf Mohamad Ismail ◽  
Sharifah Farah Fariza Syed Zainal ◽  
Norzani Mahmood

Tunneling under high overburden and in-situ stress may cause tunnel instability because of rock overstressing. Evaluating overstressing in deep hard rocks is crucial to minimize excavation risks. The excavation of the Pahang-Selangor Raw Water Transfer Tunnel is evaluated in this study. A potential overstressing problem is expected at a tunnel depth more than 500 m. Therefore, the possibility of rock overstressing is assessed based on the evaluations of in-situ stress measurement, rock strength, and actual observations during the tunnel excavation. An analytical method is used to analyze the behavior of the tunnel under high overburden stress based on rock strength and tangential stress factors. The empirical assessment approach to the observation of actual overstressing appeared to be valid for the prediction of overstressing. These approaches facilitate the reasonable prediction of tunnel behavior under different rock conditions, support systems, and overburden stresses, which serve as useful tools in the observational design and construction method of long and deep tunnels.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yuepeng Wang ◽  
Xiangjun Liu ◽  
Lixi Liang ◽  
Jian Xiong

The complexity of hydraulic fractures (HF) significantly affects the success of reservoir reconstruction. The existence of a bedding plane (BP) in shale impacts the extension of a fracture. For shale reservoirs, in order to investigate the interaction mechanisms of HF and BPs under the action of coupled stress-flow, we simulate the processes of hydraulic fracturing under different conditions, such as the stress difference, permeability coefficients, BP angles, BP spacing, and BP mechanical properties using the rock failure process analysis code (RFPA2D-Flow). Simulation results showed that HF spread outward around the borehole, while the permeability coefficient is uniformly distributed at the model without a BP or stress difference. The HF of the formation without a BP presented a pinnate distribution pattern, and the main direction of the extension is affected by both the ground stress and the permeability coefficient. When there is no stress difference in the model, the fracture extends along the direction of the larger permeability coefficient. In this study, the in situ stress has a greater influence on the extension direction of the main fracture when using the model with stress differences of 6 MPa. As the BP angle increases, the propagation of fractures gradually deviates from the BP direction. The initiation pressure and total breakdown pressure of the models at low permeability coefficients are higher than those under high permeability coefficients. In addition, the initiation pressure and total breakdown pressure of the models are also different. The larger the BP spacing, the higher the compressive strength of the BP, and a larger reduction ratio (the ratio of the strength parameters of the BP to the strength parameters of the matrix) leads to a smaller impact of the BP on fracture initiation and propagation. The elastic modulus has no effect on the failure mode of the model. When HF make contact with the BP, they tend to extend along the BP. Under the same in situ stress condition, the presence of a BP makes the morphology of HF more complex during the process of propagation, which makes it easier to achieve the purpose of stimulated reservoir volume (SRV) fracturing and increased production.


2001 ◽  
Vol 41 (1) ◽  
pp. 609
Author(s):  
X. Chen ◽  
C.P. Tan ◽  
C.M. Haberfield

To prevent or minimise wellbore instability problems, it is critical to determine the optimum wellbore profile and to design an appropriate mud weight program based on wellbore stability analysis. It is a complex and iterative decisionmaking procedure since various factors, such as in-situ stress regime, material strength and poroelastic properties, strength and poroelastic anisotropies, initial and induced pore pressures, must be considered in the assessment and determination.This paper describes the methodology and procedure for determination of optimum wellbore profile and mud weight program based on rock mechanics consideration. The methodology is presented in the form of guideline charts and the procedure of applying the methodology is described. The application of the methodology and procedure is demonstrated through two field case studies with different in-situ stress regimes in Australia and Indonesia.


2001 ◽  
Vol 41 (1) ◽  
pp. 251
Author(s):  
M.C. Daniels ◽  
D.T. Moffat ◽  
D.A. Castillo

The Gobe Main and SE Gobe Fields were discovered in the early 1990s in the Papuan Fold Belt in the Highlands of Papua New Guinea. Heavily karstified Darai Limestone at the surface and heli-supported drilling made field appraisal problematic and expensive. With initial well spacing upwards of several kilometres, these fields were thought to be ‘tank’ type models, with field-wide extrapolations of gas-oil and oil-water contacts.The main Iagifu Sandstone reservoir in the Gobe fields comprises several fluvial and near-shore sand bodies, which are readily correlatable across the fields. The reservoir units display discrete coarsening upward sequences containing medium (~17%) porosity, medium to high permeability (>100 mD) sandstones. Although several different depositional facies are interpreted within the Iagifu reservoir, sand units are extensive on the scale of the Gobe structures and do not appear to be producing significant lateral boundaries or reservoir compartmentalisation.Geomechanical analysis has enabled the calculation of in-situ stress magnitudes and establishment of a geomechanical model for Gobe. Locally, the Gobe Main Field appears to be in a strike-slip stress regime (SHmax>Sv>Shmin). SHmax directions vary from NNE– SSW to NE–SW. Stress magnitudes indicate the structure is near frictional equilibrium, with a high proportion of natural fractures and faults critically stressed for shear failure. Since first oil in early 1998, performance results have indicted pressure segregation of many of the wells in both the Gobe Main and SE Gobe fields. Although only one fault has been positively identified at the reservoir level, the mapped faults appear to have sand-on-sand juxtaposition with minimal (


Sign in / Sign up

Export Citation Format

Share Document