Experimental study on the oil-water relative permeability relationship for tight sandstone considering the nonlinear seepage characteristics

2018 ◽  
Vol 161 ◽  
pp. 409-416 ◽  
Author(s):  
Xiaoxia Ren ◽  
Aifen Li ◽  
Shuaishi Fu ◽  
Shoulong Wang
Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050055
Author(s):  
HAIBO SU ◽  
SHIMING ZHANG ◽  
YEHENG SUN ◽  
XIAOHONG WANG ◽  
BOMING YU ◽  
...  

Oil–water relative permeability curve is an important parameter for analyzing the characters of oil and water seepages in low-permeability reservoirs. The fluid flow in low-permeability reservoirs exhibits distinct nonlinear seepage characteristics with starting pressure gradient. However, the existing theoretical model of oil–water relative permeability only considered few nonlinear seepage characteristics such as capillary pressure and fluid properties. Studying the influences of reservoir pore structures, capillary pressure, driving pressure and boundary layer effect on the morphology of relative permeability curves is of great significance for understanding the seepage properties of low-permeability reservoirs. Based on the fractal theory for porous media, an analytically comprehensive model for the relative permeabilities of oil and water in a low-permeability reservoir is established in this work. The analytical model for oil–water relative permeabilities obtained in this paper is found to be a function of water saturation, fractal dimension for pores, fractal dimension for tortuosity of capillaries, driving pressure gradient and capillary pressure between oil and water phases as well as boundary layer thickness. The present results show that the relative permeabilities of oil and water decrease with the increase of the fractal dimension for tortuosity, whereas the relative permeabilities of oil and water increase with the increase of pore fractal dimension. The nonlinear properties of low-permeability reservoirs have the prominent significances on the relative permeability of the oil phase. With the increase of the seepage resistance coefficient, the relative permeability of oil phase decreases. The proposed theoretical model has been verified by experimental data on oil–water relative permeability and compared with other conventional oil–water relative permeability models. The present results verify the reliability of the oil–water relative permeability model established in this paper.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiong Liu ◽  
Desheng Zhou ◽  
Le Yan ◽  
Shun Liu ◽  
Yafei Liu

A model suitable for evaluating a tight sandstone reservoir is established. The model includes two oil-water replacement modes: capillary force mode and osmotic pressure mode. The relationship between oil-water displacement rate and dimensionless time under different parameters is drawn considering the influence of capillary force, osmotic pressure, production pressure difference, and starting pressure gradient. Results indicate that the higher the relative permeability of the water phase, the lower the relative permeability of the oil phase, the smaller the oil-water viscosity ratio, and the higher the oil-water replacement rate. The relative permeability of the water phase also affects the infiltration stabilization time. Low salinity fracturing fluid infiltration helps to improve the oil-water replacement rate.


Soft Matter ◽  
2021 ◽  
Author(s):  
David P. Rivas ◽  
Nathan D. Hedgecock ◽  
Kathleen J Stebe ◽  
Robert L Leheny

We present an experimental study combining particle tracking, active microrheology, and differential dynamic microscopy (DDM) to investigate the dynamics and rheology of an oil-water interface during biofilm formation by the...


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yongchao Xue ◽  
Qingshuang Jin ◽  
Hua Tian

Finding ways to accelerate the effective development of tight sandstone gas reservoirs holds great strategic importance in regard to the improvement of consumption pattern of world energy. The pores and throats of the tight sandstone gas reservoir are small with abundant interstitial materials. Moreover, the mechanism of gas flow is highly complex. This paper is based on the research of a typical tight sandstone gas reservoir in Changqing Oilfield. A strong stress sensitivity in tight sandstone gas reservoir is indicated by the results, and it would be strengthened with the water production; at the same time, a rise to start-up pressure gradient would be given by the water producing process. With the increase in driving pressure gradient, the relative permeability of water also increases gradually, while that of gas decreases instead. Following these results, a model of gas-water two-phase flow has been built, keeping stress sensitivity, start-up pressure gradient, and the change of relative permeability in consideration. It is illustrated by the results of calculations that there is a reduction in the duration of plateau production period and the gas recovery factor during this period if the stress sensitivity and start-up pressure gradient are considered. In contrast to the start-up pressure gradient, stress sensitivity holds a greater influence on gas well productivity.


Sign in / Sign up

Export Citation Format

Share Document