Pressure depletion and drained rock volume near hydraulically fractured parent and child wells

2019 ◽  
Vol 172 ◽  
pp. 607-626 ◽  
Author(s):  
Aadi Khanal ◽  
Ruud Weijermars
Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 7 ◽  
Author(s):  
Ruud Weijermars ◽  
Aadi Khanal ◽  
Lihua Zuo

A recently developed code to model hydrocarbon migration and convective time of flight makes use of complex analysis methods (CAM) paired with Eulerian particle tracking. Because the method uses new algorithms that are uniquely developed by our research group, validation of the fast CAM solutions with independent methods is merited. Particle path solutions were compared with independent solutions methods (Eclipse). These prior and new benchmarks are briefly summarized here to further verify the results obtained with CAM codes. Pressure field solutions based on CAM are compared with independent embedded discrete fracture method (EDFM) solutions. The CAM method is particularly attractive because its grid-less nature offers fast computation times and unlimited resolution. The method is particularly well suited for solving a variety of practical field development problems. Examples are given for fast optimization of waterflood patterns. Another successful application area is the modeling of fluid withdrawal patterns in hydraulically fractured wells. Because no gridding is required, the CAM model can compute the evolution of the drained rock volume (DRV) for an unlimited (but finite) number of both hydraulic and natural fractures. Such computations of the DRV are based on the convective time of flight and show the fluid withdrawal zone in the reservoir. In contrast, pressure depletion models are based on the diffusive time of flight. In ultra-low permeability reservoirs, the pressure depletion zones do not correspond to the DRV, because the convective and diffusive displacement rates differ over an order of magnitude (diffusive time of flight being the fastest). Therefore, pressure depletion models vastly overestimate the drained volume in shale reservoirs, which is why fracture and well spacing decisions should be based on both pressure depletion and DRV models, not pressure only.


2006 ◽  
Vol 54 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Stephen A. Hall ◽  
Colin MacBeth ◽  
Jan Stammeijer ◽  
Mark Omerod

2015 ◽  
Author(s):  
Robert Downie ◽  
Joel Le Calvez ◽  
Barry Dean ◽  
Jeff Rutledge

Abstract Interpretation of the microseismic data acquired during hydraulic fracture treatments is based on a variety of techniques that make use of the locations, times, and source parameters of the detected events, in conjunction with the stimulation treatment data. It is sometimes possible to observe trends or changes in the microseismic data that correspond to the surface pressure measurements; however this aspect of interpretation becomes problematic due the variability of fluid friction, slurry density, perforation restrictions, and other near-wellbore pressures when computing bottom hole fracturing pressure. An interpretation technique is proposed that uses pressure measurements in observation wells that are offset to the treatment well during microseismic interpretations. The observation well can be any well with open perforations in close proximity to the treatment well. The observation well pressures are not affected by the many complicating factors that are encountered when estimating pressure in the fracture from the surface pressure measured in the treatment well. Example data from field observations are used to demonstrate that the detection of microseismic events near an observation well and corresponding detection of fluid pressure from the fracture in the observation well validates the calculated event locations. The relationship between fracture pressure, the state of stress, and microseismic responses is discussed using Mohr-Coulomb failure criteria. Observation-well pressures and microseismic events are also used to identify instances where reservoir pressure depletion near the observation well affects surface operations at the treatment well. The results of the study show that reliable measurements of fracture pressure for use in microseismic interpretations can be obtained from offset observation wells, and where reservoir pressure depletion causes deviations from expected fracture behavior. The results also show that microseismic responses are directly related to fracture pressure, and not simply the presence of fracturing fluid itself, leading to an improved understanding of the conditions under which microseismic events occur.


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 01-20 ◽  
Author(s):  
Omid Mohammadzadeh ◽  
Shawn David Taylor ◽  
Dmitry Eskin ◽  
John Ratulowski

Summary One of the complex processes of permeability impairment in porous media, especially in the near-wellbore region, is asphaltene-induced formation damage. During production, asphaltene particles precipitate out of the bulk fluid phase because of pressure drop, which might result in permeability reduction caused by both deposition of asphaltene nanoparticles on porous-medium surfaces and clogging of pore throats by larger asphaltene agglomerates. Experimental data will be used to identify the parameters of an impairment model being developed. As part of a larger effort to identify key mechanisms of asphaltene deposition in porous media and develop a model for asphaltene impairment by pressure depletion, this paper focuses on a systematic design and execution of an experimental study of asphaltene-related permeability damage caused by live-oil depressurization along the length of a flow system. An experiment was performed using a custom-designed 60-ft slimtube-coil assembly packed with silica sands to a permeability of 55 md. The customized design included a number of pressure gauges at regular intervals along the coil length, which enabled real-time measurement of the fluid-pressure profile across the full length of the slimtube coil. The test was performed on a well-characterized recombined live oil from the Gulf of Mexico (GOM) that is a known problematic asphaltenic oil. Under a constant differential pressure, the injection flow rate of the live oil through the slimtube coil decreased over time as the porous medium became impaired. During the impairment stage, samples of the produced oil were collected on a regular basis for asphaltene-content measurement. After more than 1 month, the impairment test was terminated; the live oil was purged from the slimtube coil with helium at a pressure above the asphaltene-onset pressure (AOP); and the entire system was gently depressurized to bring the coil to atmospheric conditions while preserving the asphaltene-damaged zones of the coil. The permeability and porosity of the porous medium changed because of asphaltene impairment that was triggered by pressure depletion. Results indicated that the coil permeability was impaired by approximately 32% because of pressure depletion below the AOP, with most of the damage occurring in the latter section of the tube, which operated entirely below the AOP. Post-analytical studies indicated lower asphaltene content of the produced-oil samples compared with the injecting fluid. The distribution of asphaltene deposits along the length of the coil was determined by cutting the slimtube coil into 2- to 3-ft-long sections and using solvent extraction to collect the asphaltenes in each section. The extraction results confirmed that the observed permeability impairment was indeed caused by asphaltene deposition in the middle and latter sections of the coil, where the pressure was less than the AOP. With the success of this experiment, the same detailed analysis can be extended to a series of experiments to determine the effects of different key parameters on pressure-induced asphaltene impairment, including flow rate, wettability, and permeability.


Sign in / Sign up

Export Citation Format

Share Document