permeability impairment
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
Farnam Razzaghi-Koolaee ◽  
Ghasem Zargar ◽  
Bahram Soltani Soulgani ◽  
Parviz Mehrabianfar

AbstractFormation damage is a general term, which refers to any process that reduces the production or injectivity of an oil well. Clay swelling formation damage, due to incompatible fluid invasion, is a common problem in the petroleum industry. In this research, the effect of Acanthophyllum root extract (ACRE), a bio-based surfactant, on the reduction in reservoir permeability impairment has been studied. Some static tests were applied to investigate the chemical interaction between the surfactant and montmorillonite (Mt), including Mt sedimentation test, Free swelling index (FSI) test, Zeta potential tests, particle size measurement, and scanning electron microscopy (SEM). Experiments were followed by coreflood and micromodel tests to verify their effect on preventing permeability reduction and pore plugging in porous media. According to the results, Mt dispersion is unstable in the presence of ACRE solution. ACRE can reduce the FSI from 233.3 (totally hydrated Mt) to 94.3%, representing the reduction in hydration potential. The zeta potential of Mt in ACRE aqueous solution moves toward the lowest magnitude, implying that the water molecules surrounding the Mt particles are unstable. Particle size measurement and SEM analysis proved simultaneously that ACRE solution sustains Mt particles flocculated and prevents delamination. The thermal stability of the ACRE was evaluated by thermogravimetric analysis (TGA), and it showed a suitable resistance to the temperature rise. Eventually, coreflood and micromodel tests revealed that ACRE has a high performance in lowering the permeability impairment and pore plugging. All in all, ACRE showed high potential in preventing Mt swelling and, therefore, formation damage in clay-bearing sandstones.


2021 ◽  
Vol 15 (2) ◽  
pp. 184-204
Author(s):  
Tunde Adeosun ◽  
Moruffdeen Adabanija ◽  
Folake Akinpelu

Puzzling circumstance associated with formation damage near wellbore occur frequently, resulting in permeability impairments and increased pressure losses. Potential damage phenomenon usually starts from drilling to completion via production and such mechanisms have been fully considered. Most of the existing tasks to mitigate the near oil wellbore damages involve use of empirical models, conducting experiments, frequent shut down of wells for proper well tests and pressure maintenance are highly expensive and time consuming. Permeability impairments have been simulated by modifying Darcy’s equation to optimize reservoir pressure for improved near wellbore in horizontal wells. The model, transient linear partial differential equation (TLPDE) for impaired permeability is developed and numerically resolved using finite difference method. The model was implemented by writing codes in MATLAB language and the solution obtained was validated using synthetic/ field data. The results obtained for TLPDE model indicated pressure depletion over time. This was also shown for every values of coefficient of anisotropy until 400 days when the anisotropy became insignificant approaching isotropy condition, suggesting permeability impairment. Numerical simulation proved to be effective in simulating near oil wellbore damages. This paper describes the detailed mechanisms of formation damage and provided a numerical approach to model impaired permeability in horizontal wells. This approach allowed us to study the impact of various damage mechanisms related to drilling, completion conditions and significant improvement of near oil wellbore for well performance.


2021 ◽  
Vol 2 (3) ◽  
pp. 202-215
Author(s):  
Babak Fazelabdolabadi ◽  
Mostafa Montazeri ◽  
Peyman Pourafshary

The production of hydrocarbon resources at an oil field is concomitant with challenges with respect to the formation of scale inside the reservoir rock – intricately impairing its permeability and hindering the flow. Historically, the effect of ions is attributed to the undergone phenomenon; nevertheless, there exists a great deal of ambiguity about its relative significance compared to other factors, or the effectiveness as per the ion type. The present work applies a data mining strategy to unveil the influencing hierarchy of the parameters involved in driving the process within major rock categories – sandstone and carbonate – to regulate a target functionality. The functionalities considered evolve around maximizing the oil recovery, minimizing permeability impairment/ scale damage. A pool of experimental as well as field data was used for this sake, accumulating the bulk of the available literature data. The methods used for data analysis in the present work included the Bayesian Network, Random Forest, Deep Neural Network, as well as Recursive Partitioning. The results indicate a rolling importance for different ion species - altering under each functionality – which is not ranked as the most influential parameter in either case. For the oil recovery target, our results quantify a distinction between the source of ion of a single type, in terms of its influencing rank in the process. This latter deduction is the first proposal of its kind – suggesting a new perspective for research. Moreover, the machine learning methodology was found to be capable of reliably capturing the data – evidenced by the minimal errors in the bootstrapped results. Doi: 10.28991/HIJ-2021-02-03-05 Full Text: PDF


SPE Journal ◽  
2021 ◽  
pp. 1-21
Author(s):  
M. R. Fassihi ◽  
E. Turek ◽  
M. Matt Honarpour ◽  
D. Peck ◽  
R. Fyfe

Summary As part of studying miscible gas injection (GI) in a major field within the Green Canyon protraction area in the Gulf of Mexico (GOM), asphaltene-formation risk was identified as a key factor affecting a potential GI project. The industry has not conducted many experiments to quantify the effect of asphaltenes on reservoir and well performance under GI conditions. In this paper we discuss a novel laboratory test for evaluating the asphaltene effect on permeability. The goals of the study were to define the asphaltene-precipitation envelope using blends of reservoir fluid and injection gas, and measure permeability reduction caused by asphaltene precipitation in a core under GI. To properly analyze the effect of GI, a suite of fluid-characterization studies was conducted, including restored-oil samples, compositional analysis, constant composition expansion (CCE), and differential vaporization. Miscibility conditions were defined through slimtube-displacement tests. Gas solubility was determined through swelling tests complemented by asphaltene-onset-pressure (AOP) testing. The unique procedure was developed to estimate the effect of asphaltene deposition on core permeability. The 1-ft-long core was saturated with the live-oil and GI mixture at a pressure greater than the AOP, and then pressure was depleted to a pressure slightly greater than the bubblepoint. Several cycles of charging and depletion were conducted to mimic continuous flow of oil along the path of injected gas and thereby to observe the accumulation of asphaltene on the rock surface. The test results indicated that during this cyclic asphaltene-deposition process, the core permeability to the live mixture decreased in the first few cycles but appeared to stabilize after Cycle 5. The deposited asphaltenes were analyzed further through environmental scanning electron microscopy (ESEM), and their deposition was confirmed by mass balance before and after the tests. Finally, a relationship was established between permeability reduction and asphaltene precipitation. The results from the asphaltene-deposition experiment show that for the sample, fluids, and conditions used, permeability is impaired as asphaltene flocculates and begins to coat the grain surfaces. This impairment reaches a plateau at approximately 40% of the initial permeability. Distribution of asphaltene along the core was measured at the end by segmenting the core and conducting solvent extraction on each segment. Our recommendation is numerical modeling of these test results and using this model to forecast the magnitude of the permeability impairment in a reservoir setting during miscible GI.


SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Xin Su ◽  
Rouzbeh G. Moghanloo ◽  
Minhui Qi ◽  
Xiang-an Yue

Summary Formation damage mechanisms in general lower the quality of the near wellbore, often manifested in the form of permeability reduction, and thus reducing the productivity of production wells and injectivity of injection wells. Asphaltene deposition, as one of the important causes, can trigger serious formation damage issues and significantly restrict the production capacity of oil wells. Several mechanisms acting simultaneously contribute to the complexity associated with prediction of permeability impairment owing to asphaltene deposition; thus, integration of modeling efforts for asphaltene aggregation and deposition mechanisms seems inevitable for improved predictability. In this work, an integrated simulation approach is proposed to predict permeability impairment in porous medium. The proposed approach is novel because it integrates various mathematical models to study permeability impairment considering porosity reduction, particle aggregation, and pore connectivity loss caused by asphaltene deposition. To improve the accuracy of simulation results, porous media is considered as a bundle (different size) of capillary tubes with dynamic interconnectivity. The total volume change of interconnected tubes will directly represent permeability reduction realized in porous media. The prediction of asphaltene deposition in porous media is improved in this paper via integration of the particle aggregation model into calculation. The simulation results were verified by comparing with existing experimental data sets. After that, a sensitivity analysis was performed to study parameters that affect permeability impairment. The simulation results show that our permeability impairment model—considering asphaltene deposition, aggregation, and pore connectivity loss—can accurately reproduce the experimental results with fewer fitting or empirical parameters needed. The sensitivity analysis shows that longer aggregation time, higher flow velocity, and bigger precipitation concentration will lead to a faster permeability reduction. The findings of this study can help provide better understanding of the permeability impairment caused by asphaltene deposition and pore blockage, which provides useful insights for prediction of production performance of oil wells.


2021 ◽  
Vol 655 (1) ◽  
pp. 012065
Author(s):  
D. V. Abraham ◽  
O. D. Orodu ◽  
V. E. Efeovbokhan ◽  
E. E., Okoro ◽  
T. I. Ojo ◽  
...  

Author(s):  
Safna Nishad ◽  
Riyadh Al-Raoush

Recently, researchers have been attracted towards the gas production from hydrate bearing sediments considering its abundance in marine continental margins and persisting demand for alternate energy. Dissociation of hydrate into gas and water is the preliminary technique for gas production in hydrate bearing sediments. Expanded fluid volume and gas pressure upon dissociation detach the fines from the grain surface and result in pore throat entrapment. Migration of fines associated with gas flow greatly influence the alteration of permeability of the sediment by clogging pore throats in the flow path. A pore-scale visualization study was implemented to provide a clear insight into the actual mechanisms associated with mobilization and clogging of fines during two-phase flow through a microfluidic chip. Carboxylate modified polystyrene latex particles deposited in the porous media were migrated during drainage with CO2 gas. The detachment of fine particles from the grain surfaces was observed and were retained on the new interface; gas-water interface. The images and videos captured during the experiment were helpful in observing additional pore scale mechanisms responsible for permeability impairment in the porous media. Interface pinning, deformation and resistance to coalescence were found to be other mechanisms in addition to pore clogging.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4511
Author(s):  
Jarand Gauteplass ◽  
Stian Almenningen ◽  
Tanja Barth ◽  
Geir Ersland

Successful geological sequestration of carbon depends strongly on reservoir seal integrity and storage capacity, including CO2 injection efficiency. Formation of solid hydrates in the near-wellbore area during CO2 injection can cause permeability impairment and, eventually, injectivity loss. In this study, flow remediation in hydrate-plugged sandstone was assessed as function of hydrate morphology and saturation. CO2 and CH4 hydrates formed consistently at elevated pressures and low temperatures, reflecting gas-invaded zones containing residual brine near the injection well. Flow remediation by methanol injection benefited from miscibility with water; the methanol solution contacted and dissociated CO2 hydrates via liquid water channels. Injection of N2 gas did not result in flow remediation of non-porous CO2 and CH4 hydrates, likely due to insufficient gas permeability. In contrast, N2 as a thermodynamic inhibitor dissociated porous CH4 hydrates at lower hydrate saturations (<0.48 frac.). Core-scale thermal stimulation proved to be the most efficient remediation method for near-zero permeability conditions. However, once thermal stimulation ended and pure CO2 injection recommenced at hydrate-forming conditions, secondary hydrate formation occurred aggressively due to the memory effect. Field-specific remediation methods must be included in the well design to avoid key operational challenges during carbon injection and storage.


Sign in / Sign up

Export Citation Format

Share Document