Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery

Author(s):  
Mohammad-Reza Mohammadi ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Mahin Schaffie ◽  
Maen M. Husein ◽  
Mohammad Ranjbar
Author(s):  
Nait Amar Menad ◽  
Zeraibi Noureddine ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Shahab Shamshirband ◽  
Amir Mosavi ◽  
...  

In the implementation of thermal enhanced oil recovery (TEOR) techniques, the temperature impact on relative permeability in oil - water systems is of special concern. Hence, developing a fast and reliable tool to model the temperature effect on two-phase oil - water relative permeability is still a major challenge for precise studying and evaluation of TEOR processes. To reach the goal of this work, two promising soft-computing algorithms, namely Group Method of Data Handling (GMDH) and Gene Expression Programming (GEP) were employed to develop reliable, accurate, simple and quick to use paradigms to predict the temperature dependency of relative permeability in oil - water systems (Krw and Kro). To do so, a large database encompassing wide-ranging temperatures and fluids/rock parameters, including oil and water viscosities, absolute permeability and water saturation, was considered to establish these correlations. Statistical results and graphical analyses disclosed the high degree of accuracy for the proposed correlations in emulating the experimental results. In addition, GEP based correlations were found to be the most consistent with root mean square error (RMSE) values of 0.0284 and 0.0636 for Krw and Kro, respectively. Lastly, the comparison of the performances of our correlations against those of the preexisting ones indicated the large superiority of the introduced correlations compared to previously published methods. The findings of this study can help for better understanding and studying the temperature dependency of oil - water relative permeability in thermal enhanced oil recovery processes.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3045
Author(s):  
Farzaneh Rezaei ◽  
Amin Rezaei ◽  
Saeed Jafari ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Amir H. Mohammadi ◽  
...  

Carbon dioxide-based enhanced oil-recovery (CO2-EOR) processes have gained considerable interest among other EOR methods. In this paper, based on the molecular weight of paraffins (n-alkanes), pressure, and temperature, the magnitude of CO2–n-alkanes interfacial tension (IFT) was determined by utilizing soft computing and mathematical modeling approaches, namely: (i) radial basis function (RBF) neural network (optimized by genetic algorithm (GA), gravitational search algorithm (GSA), imperialist competitive algorithm (ICA), particle swarm optimization (PSO), and ant colony optimization (ACO)), (ii) multilayer perception (MLP) neural network (optimized by Levenberg-Marquardt (LM)), and (iii) group method of data handling (GMDH). To do so, a broad range of laboratory data consisting of 879 data points collected from the literature was employed to develop the models. The proposed RBF-ICA model, with an average absolute percent relative error (AAPRE) of 4.42%, led to the most reliable predictions. Furthermore, the Parachor approach with different scaling exponents (n) in combination with seven equations of state (EOSs) was applied for IFT predictions of the CO2–n-heptane and CO2–n-decane systems. It was found that n = 4 was the optimum value to obtain precise IFT estimations; and combinations of the Parachor model with three-parameter Peng–Robinson and Soave–Redlich–Kwong EOSs could better estimate the IFT of the CO2–n-alkane systems, compared to other used EOSs.


SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 803-818 ◽  
Author(s):  
Mehrnoosh Moradi Bidhendi ◽  
Griselda Garcia-Olvera ◽  
Brendon Morin ◽  
John S. Oakey ◽  
Vladimir Alvarado

Summary Injection of water with a designed chemistry has been proposed as a novel enhanced-oil-recovery (EOR) method, commonly referred to as low-salinity (LS) or smart waterflooding, among other labels. The multiple names encompass a family of EOR methods that rely on modifying injection-water chemistry to increase oil recovery. Despite successful laboratory experiments and field trials, underlying EOR mechanisms remain controversial and poorly understood. At present, the vast majority of the proposed mechanisms rely on rock/fluid interactions. In this work, we propose an alternative fluid/fluid interaction mechanism (i.e., an increase in crude-oil/water interfacial viscoelasticity upon injection of designed brine as a suppressor of oil trapping by snap-off). A crude oil from Wyoming was selected for its known interfacial responsiveness to water chemistry. Brines were prepared with analytic-grade salts to test the effect of specific anions and cations. The brines’ ionic strengths were modified by dilution with deionized water to the desired salinity. A battery of experiments was performed to show a link between dynamic interfacial viscoelasticity and recovery. Experiments include double-wall ring interfacial rheometry, direct visualization on microfluidic devices, and coreflooding experiments in Berea sandstone cores. Interfacial rheological results show that interfacial viscoelasticity generally increases as brine salinity is decreased, regardless of which cations and anions are present in brine. However, the rate of elasticity buildup and the plateau value depend on specific ions available in solution. Snap-off analysis in a microfluidic device, consisting of a flow-focusing geometry, demonstrates that increased viscoelasticity suppresses interfacial pinch-off, and sustains a more continuous oil phase. This effect was examined in coreflooding experiments with sodium sulfate brines. Corefloods were designed to limit wettability alteration by maintaining a low temperature (25°C) and short aging times. Geochemical analysis provided information on in-situ water chemistry. Oil-recovery and pressure responses were shown to directly correlate with interfacial elasticity [i.e., recovery factor (RF) is consistently greater the larger the induced interfacial viscoelasticity for the system examined in this paper]. Our results demonstrate that a largely overlooked interfacial effect of engineered waterflooding can serve as an alternative and more complete explanation of LS or engineered waterflooding recovery. This new mechanism offers a direction to design water chemistry for optimized waterflooding recovery in engineered water-chemistry processes, and opens a new route to design EOR methods.


Measurement ◽  
2018 ◽  
Vol 121 ◽  
pp. 335-343 ◽  
Author(s):  
Seyed Abolhasan Naeini ◽  
Reza Ziaie Moayed ◽  
Afshin Kordnaeij ◽  
Hossein Mola-Abasi

Sign in / Sign up

Export Citation Format

Share Document