Equivalent anisotropic permeability of shale rocks: Effect of micro-fractures

Author(s):  
Jiangfeng Cui ◽  
Guangyao Si
Author(s):  
Yuan Gao

This study is using the multiple relaxation time Lattice Boltzmann method to calculate the permeability of carbon fiber paper and carbon fiber cloth gas diffusion layers (GDL). The 3D gas diffusion layers are generated by X-ray computed tomography, This method involve generation of 3D digital model of gas diffusion layers acquired through X-ray micro-tomography at resolution of a few micros. The reconstructed 3D images were then read into the LBM model to calculate the anisotropic permeability of carbon fiber paper and carbon fiber cloth GDL. We investigated the relationships between the anisotropic permeability and porosity and compare the difference between the two different kinds of GDLs when they have the similar porosity. We also calculate the permeability with different viscosity and compare the two results from the carbon fiber paper and carbon fiber cloth. It is useful for selection of materials for high performance gas diffusion media and can improve the performance of the fuel cells.


2021 ◽  
Vol 2 (1) ◽  
pp. 67-76
Author(s):  
T. N. Nzomo ◽  
S. E Adewole ◽  
K. O Awuor ◽  
D. O. Oyoo

Horizontal wells are more productive compared to vertical wells if their performance is optimized. For a completely bounded oil reservoir, immediately the well is put into production, the boundaries of the oil reservoir have no effect on the flow. The pressure distribution thus can be approximated with this into consideration. When the flow reaches either the vertical or the horizontal boundaries of the reservoir, the effect of the boundaries can be factored into the pressure distribution approximation. In this paper we consider the above cases and present a detailed mathematical model that can be used for short time approximation of the pressure distribution for a horizontal well with sealed boundaries. The models are developed using appropriate Green’s and source functions. In all the models developed the effect of the oil reservoir boundaries as well as the oil reservoir parameters determine the flow period experienced. In particular, the effective permeability relative to horizontal anisotropic permeability, the width and length of the reservoir influence the pressure response. The models developed can be used to approximate and analyze the pressure distribution for horizontal wells during a short time of production. The models presented show that the dimensionless pressure distribution is affected by the oil reservoir geometry and the respective directional permeabilities.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2582-2600
Author(s):  
Syed Shabbar Raza ◽  
Victor Rudolph ◽  
Tom Rufford ◽  
Zhongwei Chen

Summary A novel, simple, economical, and time-effective method to estimate the anisotropic permeability of coal is presented in this paper. This method estimates the coal’s anisotropic permeability by avoiding the tedious experimentation using triaxial permeameter or history-matching exercises. This method calculates the absolute magnitude of the permeability of the sample. In this regard, it is unlike other analytical permeability models, such as given by Palmer and Mansoori (1998) and Shi and Durucan (2014), that only calculate the permeability ratio (k/k0). The motivation is to find a method by which the permeability of the coal may be determined with reasonable accuracy by using only two easy measurements: mercury intrusion porosimetry (MIP) and anisotropic stress-strain (σ-ɛ) measurement. The main blocks of the method are based on cleat size that is obtained from MIP and randomly allocated to form flow channels/cleats through the coal; these cleats form parallel paths in the orthogonal face and butt cleat directions that provide the permeability; and the cleat width (b) is stress dependent. This method is further validated by comparing with the experimentally measured stress-dependent permeability of Surat Basin (Australia) coal and German coal in face cleat and butt cleat directions.


Sign in / Sign up

Export Citation Format

Share Document