Mixed salt precipitation and water evaporation during smart water alternative CO2 injection in carbonate reservoirs

Author(s):  
Peyman Abbasi ◽  
Mohammad Madani ◽  
Saeed Abbasi ◽  
Jamshid Moghadasi
2009 ◽  
Vol 1 (1) ◽  
pp. 1775-1782 ◽  
Author(s):  
Mehdi Zeidouni ◽  
Mehran Pooladi-Darvish ◽  
David Keith

SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1058-1068 ◽  
Author(s):  
P.. Bolourinejad ◽  
R.. Herber

Summary Depleted gas fields are among the most probable candidates for subsurface storage of carbon dioxide (CO2). With proven reservoir and qualified seal, these fields have retained gas over geological time scales. However, unlike methane, injection of CO2 changes the pH of the brine because of the formation of carbonic acid. Subsequent dissolution/precipitation of minerals changes the porosity/permeability of reservoir and caprock. Thus, for adequate, safe, and effective CO2 storage, the subsurface system needs to be fully understood. An important aspect for subsurface storage of CO2 is purity of this gas, which influences risk and cost of the process. To investigate the effects of CO2 plus impurities in a real case example, we have carried out medium-term (30-day) laboratory experiments (300 bar, 100°C) on reservoir and caprock core samples from gas fields in the northeast of the Netherlands. In addition, we attempted to determine the maximum allowable concentration of one of the possible impurities in the CO2 stream [hydrogen sulfide (H2S)] in these fields. The injected gases—CO2, CO2+100 ppm H2S, and CO2+5,000 ppm H2S—were reacting with core samples and brine (81 g/L Na+, 173 g/L Cl−, 22 g/L Ca2+, 23 g/L Mg2+, 1.5 g/L K+, and 0.2 g/L SO42−). Before and after the experiments, the core samples were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD) for mineralogical variations. The permeability of the samples was also measured. After the experiments, dissolution of feldspars, carbonates, and kaolinite was observed as expected. In addition, we observed fresh precipitation of kaolinite. However, two significant results were obtained when adding H2S to the CO2 stream. First, we observed precipitation of sulfate minerals (anhydrite and pyrite). This differs from results after pure CO2 injection, where dissolution of anhydrite was dominant in the samples. Second, severe salt precipitation took place in the presence of H2S. This is mainly caused by the nucleation of anhydrite and pyrite, which enabled halite precipitation, and to a lesser degree by the higher solubility of H2S in water and higher water content of the gas phase in the presence of H2S. This was confirmed by the use of CMG-GEM (CMG 2011) modeling software. The precipitation of halite, anhydrite, and pyrite affects the permeability of the samples in different ways. After pure CO2 and CO2+100 ppm H2S injection, permeability of the reservoir samples increased by 10–30% and ≤3%, respectively. In caprock samples, permeability increased by a factor of 3–10 and 1.3, respectively. However, after addition of 5,000 ppm H2S, the permeability of all samples decreased significantly. In the case of CO2+100 ppm H2S, halite, anhydrite, and pyrite precipitation did balance mineral dissolution, causing minimal variation in the permeability of samples.


2018 ◽  
Vol 852 ◽  
pp. 398-421
Author(s):  
Helena L. Kelly ◽  
Simon A. Mathias

An important attraction of saline formations for CO2 storage is that their high salinity renders their associated brine unlikely to be identified as a potential water resource in the future. However, high salinity can lead to dissolved salt precipitating around injection wells, resulting in loss of injectivity and well deterioration. Earlier numerical simulations have revealed that salt precipitation becomes more problematic at lower injection rates. This article presents a new similarity solution, which is used to study the relationship between capillary pressure and salt precipitation around CO2 injection wells in saline formations. Mathematical analysis reveals that the process is strongly controlled by a dimensionless capillary number, which represents the ratio of the CO2 injection rate to the product of the CO2 mobility and air-entry pressure of the porous medium. Low injection rates lead to low capillary numbers, which in turn are found to lead to large volume fractions of precipitated salt around the injection well. For one example studied, reducing the CO2 injection rate by 94 % led to a tenfold increase in the volume fraction of precipitated salt around the injection well.


Sign in / Sign up

Export Citation Format

Share Document