Experimental and Modeling Study of Salt Precipitation During Injection of CO2 Contaminated With H2S Into Depleted Gas Fields in the Northeast of the Netherlands

SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1058-1068 ◽  
Author(s):  
P.. Bolourinejad ◽  
R.. Herber

Summary Depleted gas fields are among the most probable candidates for subsurface storage of carbon dioxide (CO2). With proven reservoir and qualified seal, these fields have retained gas over geological time scales. However, unlike methane, injection of CO2 changes the pH of the brine because of the formation of carbonic acid. Subsequent dissolution/precipitation of minerals changes the porosity/permeability of reservoir and caprock. Thus, for adequate, safe, and effective CO2 storage, the subsurface system needs to be fully understood. An important aspect for subsurface storage of CO2 is purity of this gas, which influences risk and cost of the process. To investigate the effects of CO2 plus impurities in a real case example, we have carried out medium-term (30-day) laboratory experiments (300 bar, 100°C) on reservoir and caprock core samples from gas fields in the northeast of the Netherlands. In addition, we attempted to determine the maximum allowable concentration of one of the possible impurities in the CO2 stream [hydrogen sulfide (H2S)] in these fields. The injected gases—CO2, CO2+100 ppm H2S, and CO2+5,000 ppm H2S—were reacting with core samples and brine (81 g/L Na+, 173 g/L Cl−, 22 g/L Ca2+, 23 g/L Mg2+, 1.5 g/L K+, and 0.2 g/L SO42−). Before and after the experiments, the core samples were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD) for mineralogical variations. The permeability of the samples was also measured. After the experiments, dissolution of feldspars, carbonates, and kaolinite was observed as expected. In addition, we observed fresh precipitation of kaolinite. However, two significant results were obtained when adding H2S to the CO2 stream. First, we observed precipitation of sulfate minerals (anhydrite and pyrite). This differs from results after pure CO2 injection, where dissolution of anhydrite was dominant in the samples. Second, severe salt precipitation took place in the presence of H2S. This is mainly caused by the nucleation of anhydrite and pyrite, which enabled halite precipitation, and to a lesser degree by the higher solubility of H2S in water and higher water content of the gas phase in the presence of H2S. This was confirmed by the use of CMG-GEM (CMG 2011) modeling software. The precipitation of halite, anhydrite, and pyrite affects the permeability of the samples in different ways. After pure CO2 and CO2+100 ppm H2S injection, permeability of the reservoir samples increased by 10–30% and ≤3%, respectively. In caprock samples, permeability increased by a factor of 3–10 and 1.3, respectively. However, after addition of 5,000 ppm H2S, the permeability of all samples decreased significantly. In the case of CO2+100 ppm H2S, halite, anhydrite, and pyrite precipitation did balance mineral dissolution, causing minimal variation in the permeability of samples.

2020 ◽  
Vol 60 (1) ◽  
pp. 117
Author(s):  
Cut Aja Fauziah ◽  
Emad A. Al-Khdheeawi ◽  
Ahmed Barifcani ◽  
Stefan Iglauer

Wettability of rock–fluid systems is an important for controlling the carbon dioxide (CO2) movement and the capacities of CO2 geological trapping mechanisms. Although contact angle measurement is considered a potentially scalable parameter for evaluation of the wettability characteristics, there are still large uncertainties associated with the contact angle measurement for CO2–brine–rock systems. Thus, this study experimentally examined the wettability, before and after flooding, of two different samples of sandstone: Berea and Bandera grey sandstones. For both samples, several sets of flooding of brine (5 wt % NaCl + 1 wt % KCl in deionised water), CO2-saturated (live) brine and supercritical CO2 were performed. The contact angle measurements were conducted for the CO2–sandstone system at two different reservoir pressures (10 and 15 MPa) and at a reservoir temperature of 323 K. The results showed that both the advancing and receding contact angles of the sandstone samples after flooding were higher than that measured before flooding (i.e. after CO2 injection the sandstones became more CO2-wet). Moreover, the Bandera grey samples had higher contact angles than Berea sandstone. Thus, we conclude that CO2 flooding altered the sandstone wettability to be more CO2-wet, and Berea sandstone had a higher CO2 storage capacity than Bandera grey sandstone.


SPE Journal ◽  
2020 ◽  
pp. 1-9
Author(s):  
Emmanuel Ajoma ◽  
Thanarat Sungkachart ◽  
Saria ◽  
Hang Yin ◽  
Furqan Le-Hussain

Summary To determine the effect on oil recovery and carbon dioxide (CO2) storage, laboratory experiments are run with various fractions of CO2 injected (FCI): pure CO2 injection (FCI = 1), water-saturated CO2 (wsCO2) injection (FCI = 0.993), simultaneous water and gas (SWAG) (CO2) injection (FCI = 0.75), carbonated water injection (CWI) (FCI = 0.007), and water injection (FCI = 0). All experiments are performed on Bentheimer sandstone cores at 70°C and 11.7 MPa (1,700 psia). The oil phase is composed of 65% hexane and 35% decane by molar fraction. Before any fluid is injected, the core is filled with oil and irreducible water. Pressure difference across the core and production rate of gas are measured during the experiment. The collected produced fluids are analyzed in a gas chromatograph to determine their composition. Cumulative oil recovery after injection is found to be 78 to 83% for wsCO2, 78% for SWAG, 74% for pure CO2, 53% for CWI, and 35% for water. Net CO2 stored is also found to be the highest for wsCO2 (59 to 65% of the pore volume), followed by that for CO2 injection (56%) and that for SWAG (42%). These results suggest that wsCO2 injection might outperform pure CO2 injection at both oil recovery and net CO2stored.


SPE Journal ◽  
2015 ◽  
Vol 20 (05) ◽  
pp. 1094-1102 ◽  
Author(s):  
Qing Tao ◽  
Steven L. Bryant

Summary Carbon dioxide (CO2) storage in deep brine-filled structures accompanied by brine extraction has several more advantages than conventional injection-only storage schemes, but avoiding CO2 arrival at extraction wells becomes a paramount concern. The use of conventional reservoir simulators to optimize CO2 injection/brine extraction requires a model of the petrophysical properties of the storage formation. Unfortunately, those properties are unlikely to be adequately characterized in storage reservoirs, especially at the outset of a project. An attractive alternative tool to manage injection/extraction storage processes is the capacitance/resistance model (CRM), which only requires the wells' injection/extraction histories as input. A useful characteristic of CRM for this application is that it identifies the connectivities between injectors and extractors. We show the effectiveness of the method on a homogeneous aquifer with variable injection rates. We describe a work flow that optimizes subsequent CO2 storage in the aquifer with the CRM parameters obtained from the injection/extraction history. A reasonable estimate of CRM parameters requires a sufficient length of injection/extraction history. We present further a dynamic work flow that allows updating the history and the optimal control strategy. The applications on the example storage aquifers show significant improvements in the amount of CO2 stored by injection/extraction strategies.


2019 ◽  
Vol 5 (1) ◽  
pp. 4 ◽  
Author(s):  
Yen Adams Sokama-Neuyam ◽  
Jann Rune Ursin ◽  
Patrick Boakye

Deep saline reservoirs have the highest volumetric CO2 storage potential, but drying and salt precipitation during CO2 injection could severely impair CO2 injectivity. The physical mechanisms and impact of salt precipitation, especially in the injection area, is still not fully understood. Core-flood experiments were conducted to investigate the mechanisms of external and internal salt precipitation in sandstone rocks. CO2 Low Salinity Alternating Gas (CO2-LSWAG) injection as a potential mitigation technique to reduce injectivity impairment induced by salt precipitation was also studied. We found that poor sweep and high brine salinity could increase salt deposition on the surface of the injection area. The results also indicate that the amount of salt precipitated in the dry-out zone does not change significantly during the drying process, as large portion of the precipitated salt accumulate in the injection vicinity. However, the distribution of salt in the dry-out zone was found to change markedly when more CO2 was injected after salt precipitation. This suggests that CO2 injectivity impairment induced by salt precipitation is probably dynamic rather than a static process. It was also found that CO2-LSWAG could improve CO2 injectivity after salt precipitation. However, below a critical diluent brine salinity, CO2-LSWAG did not improve injectivity. These findings provide vital understanding of core-scale physical mechanisms of the impact of salt precipitation on CO2 injectivity in saline reservoirs. The insight gained could be implemented in simulation models to improve the quantification of injectivity losses during CO2 injection into saline sandstone reservoirs.


2021 ◽  
Author(s):  
Jiahui You ◽  
Kyung Jae Lee

Abstract CO2 storage and sequestration are regarded as an effective approach to mitigate greenhouse gas emissions. While injecting an enormous amount of CO2 into carbonate–rich aquifers, CO2 dissolves in the formation brine under the large pressure, and the subsequently formed CO2–enriched brine reacts with the calcite. Reaction–induced changes in pore structure and fracture geometry alter the porosity and permeability, giving rise to concerns of CO2storage capacity and security. Especially in the reservoir or aquifer with natural fractures, the fractures provide a highly permeable pathways for fluid flow. This study aims to analyze the acid–rock interaction and subsequent permeability evolution in the systems with complex fracture configurations during CO2 injection by implementing a pore–scale DBS reactive transport model. The model has been developed by expanding the functionality of OpenFOAM, which is an open–source code for computational fluid dynamics. A series of partial differential equations are discretized by applying the Finite Volume Method (FVM) and sequentially solved. Different fracture configurations in terms of fracture length, density, connection, and mineral components have been considered to investigate their impacts on the dynamic porosity–permeability relationship, dissolution rate, and reactant transport characteristics during CO2 storage. The investigation revealed several interesting findings. We found that calcium (Ca) concentration was low in the poorly connected area at the initial time. As CO2–enriched brine saturated the system and reacted with calcite, Ca started being accumulated in the system. However, Ca barely flowed out of the poor–connected area, and the concentration became high. Lengths of branches mainly influenced the dissolution rates, while they had slight impacts on the porosity–permeability relationship. While fracture connectivity had an apparent influence on the porosity–permeability relationship, it showed a weak relevance on the dissolution rate. These microscopic insights can help enhance the CO2 sealing capacity and guarantee environmental security.


SPE Journal ◽  
2017 ◽  
Vol 23 (03) ◽  
pp. 661-671 ◽  
Author(s):  
Hui Pu ◽  
Yuhe Wang ◽  
Yinghui Li

Summary Widely distributed organic-rich shales are being considered as one of the important carbon-storage targets, owing to three differentiators compared with conventional reservoirs and saline aquifers: (1) trapping of a significant amount of carbon dioxide (CO2) permanently; (2) kerogen-rich shale's higher affinity of CO2; and (3) existing well and pipeline infrastructure, especially that in the vicinity of existing power or chemical plants. The incapability to model capillarity with the consideration of imperative pore-size-distribution (PSD) characteristics by use of commercial software may lead to inaccurate modeling of CO2 injection in organic shale. We develop a novel approach to examine how PSD would alter phase and flow behavior under nanopore confinements. We incorporate adsorption behavior with a local density-optimization algorithm designed for multicomponent interactions to adsorption sites for a full spectrum of reservoir pressures of interests. This feature elevates the limitation of the Langmuir isotherm model, allowing us to understand the storage and sieving capabilities for a CO2/N2 flue-gas system with remaining reservoir fluids. Taking PSD data of Bakken shale, we perform a core-scale simulation study of CO2/N2 flue-gas injection and reveal the differences between CO2 injection/storage in organic shales and conventional rocks on the basis of numerical modeling.


SPE Journal ◽  
2020 ◽  
pp. 1-14
Author(s):  
Muhammad Aslam Md Yusof ◽  
Mohamad Arif Ibrahim ◽  
Mazlin Idress ◽  
Ahmad Kamal Idris ◽  
Ismail Mohd Saaid ◽  
...  

Summary The injection of carbon dioxide (CO2) into saline aquifers is highlighted as an effective technique to permanently secure anthropogenic gas produced from high CO2 gas fields in the Southeast Asia region. However, previous studies indicate that CO2 injectivity can be impaired primarily due to the interactions between CO2/brine/rock. In this paper, we investigate the effect of a CO2 injection scheme, rock permeability, brine type, and salinity on CO2 injectivity, which is presented by permeability alteration. A CO2 coreflood experiment and the characterization of the rock and effluent produced are presented. Furthermore, core samples with different permeabilities of the typical geological storage for sequestration were selected and analyzed using X-ray fluorescence (XRF), X-ray diffraction (XRD), and field-emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (FESEM-EDX). The cores were then saturated with synthetic brine composed of 6,000, 30,000 or 100,000 parts per million (ppm) of either sodium chloride (NaCl), potassium chloride (KCl), or calcium chloride (CaCl2). Subsequently, the core samples were injected by either supercritical CO2 (scCO2), CO2-saturated brine, or CO2-saturated brine followed by scCO2. The fines particles from the collected effluent were separated for further analysis. The results indicate that a CO2 injection scheme, injection flow rate, brine salinity, and initial rock permeability are the principal factors that contribute to the permeability alteration of the core samples. It was also found from FESEM-EDX analysis of the produced fines that the precipitated salt, silica grains, and kaolinite migrated during scCO2 injection, suggesting the dissolution and precipitation of minerals. This phenomenon led to the migration of particles, some of which plugged the pore spaces and reduced the permeability. Besides, the core saturated with CaCl2 brine was the only sample with improvement in permeability after the CO2 flooding experiment.


SPE Journal ◽  
2021 ◽  
pp. 1-15
Author(s):  
Arthur Moncorgé ◽  
Martin Petitfrère ◽  
Sylvain Thibeau

Summary Storage of carbon dioxide (CO2) in depleted gas reservoirs or large aquifers is one of the available solutions to reduce anthropogenic greenhouse gas emissions. Numerical modeling of these processes requires the use of large geological models with several orders of magnitude of variations in the porous media properties. Moreover, modeling the injection of highly concentrated and cold CO2 in large reservoirs with the correct physics introduces numerical challenges that conventional reservoir simulators cannot handle. We propose a thermal formulation based on a full equation of state (EoS) formalism to model pure CO2 and CO2 mixtures with the residual gas of depleted reservoirs. Most of the reservoir simulators model the phase equilibriums with a pressure-temperature-based formulation. With this usual framework, it is not possible to exhibit two phases with pure CO2 contents. Moreover, in this classical framework, the crossing of the phase envelope is associated with a large discontinuity in the enthalpy computation, which can prevent the convergence of the energy conservation equation. In this work, accurate and continuous phase properties are obtained, basing our formulation on enthalpy as a primary variable. We first implement a new phase-split algorithm with input variables as pressure and enthalpy instead of the usual pressure and temperature, and we validate it on several test cases. This algorithm can model situations in which the mixture can change rapidly from one phase to the other at constant pressure and temperature. Then, treating enthalpy instead of temperature as a primary variable in both the reservoir and the well modeling algorithms, our reservoir simulator can model situations with pure or near pure components, as well as crossing of the phase envelope that usual formulations implemented in reservoir simulators cannot handle. We first validate our new formulation against the usual formulation on a problem in which both formulations can correctly represent the physics. Then, we show situations in which the usual formulations fail to represent the correct physics and that are simulated well with our new formulation. Finally, we apply our new model for the simulation of pure and cold CO2 injection in a real depleted gas reservoir from the Netherlands.


2021 ◽  
Vol 2 (2) ◽  
pp. 55
Author(s):  
M Nabil Ziaudin Ahamed ◽  
Muhammad Azfar Mohamed ◽  
M Aslam Md Yusof ◽  
Iqmal Irshad ◽  
Nur Asyraf Md Akhir ◽  
...  

Carbon dioxide, CO2 emissions have risen precipitously over the last century, wreaking havoc on the atmosphere. Carbon Capture and Sequestration (CCS) techniques are being used to inject as much CO2 as possible and meet emission reduction targets with the fewest number of wells possible for economic reasons. However, CO2 injectivity is being reduced in sandstone formations due to significant CO2-brine-rock interactions in the form of salt precipitation and fines migration. The purpose of this project is to develop a regression model using linear regression and neural networks to correlate the combined effect of fines migration and salt precipitation on CO2 injectivity as a function of injection flow rates, brine salinities, particle sizes, and particle concentrations. Statistical analysis demonstrates that the neural network model has a reliable fit of 0.9882 in R Square and could be used to accurately predict the permeability changes expected during CO2 injection in sandstones.


2020 ◽  
Vol 2 (3) ◽  
pp. 333-364
Author(s):  
Kamal Jawher Khudaida ◽  
Diganta Bhusan Das

One of the most promising means of reducing carbon content in the atmosphere, which is aimed at tackling the threats of global warming, is injecting carbon dioxide (CO2) into deep saline aquifers (DSAs). Keeping this in mind, this research aims to investigate the effects of various injection schemes/scenarios and aquifer characteristics with a particular view to enhance the current understanding of the key permanent sequestration mechanisms, namely, residual and solubility trapping of CO2. The paper also aims to study the influence of different injection scenarios and flow conditions on the CO2 storage capacity and efficiency of DSAs. Furthermore, a specific term of the permanent capacity and efficiency factor of CO2 immobilization in sedimentary formations is introduced to help facilitate the above analysis. Analyses for the effects of various injection schemes/scenarios and aquifer characteristics on enhancing the key permanent sequestration mechanisms is examined through a series of numerical simulations employed on 3D homogeneous and heterogeneous aquifers based on the geological settings for Sleipner Vest Field, which is located in the Norwegian part of the North Sea. The simulation results highlight the effects of heterogeneity, permeability isotropy, injection orientation and methodology, and domain-grid refinement on the capillary pressure–saturation relationships and the amounts of integrated CO2 throughout the timeline of the simulation via different trapping mechanisms (solubility, residual and structural) and accordingly affect the efficiency of CO2 sequestration. The results have shown that heterogeneity increases the residual trapping of CO2, while homogeneous formations promote more CO2 dissolution because fluid flows faster in homogeneous porous media, inducing more contact with fresh brine, leading to higher dissolution rates of CO2 compared to those in heterogeneous porous medium, which limits fluid seepage. Cyclic injection has been shown to have more influence on heterogenous domains as it increases the capillary pressure, which forces more CO2 into smaller-sized pores to be trapped and exposed to dissolution in the brine at later stages of storage. Storage efficiency increases proportionally with the vertical-to-horizontal permeability ratio of geological formations because higher ratios facilitate the further extent of the gas plume and increases the solubility trapping of the integrated gas. The developed methodology and the presented results are expected to play key roles in providing further insights for assessing the feasibility of various geological formations for CO2 storage.


Sign in / Sign up

Export Citation Format

Share Document