Dynamic effective permeability of a laminated structure with cross flow in the transient flow process and its application to reservoir simulation

Author(s):  
Xinyi Zhao ◽  
Qian Sang ◽  
Yajun Li ◽  
Huimin Liu ◽  
Zheng Li ◽  
...  
2006 ◽  
Vol 61 (15) ◽  
pp. 5057-5069 ◽  
Author(s):  
A.L. Ahmad ◽  
M.F. Chong ◽  
S. Bhatia
Keyword(s):  

2019 ◽  
Vol 25 (18) ◽  
pp. 2509-2522 ◽  
Author(s):  
Xiuli Wang ◽  
Yonggang Lu ◽  
Rongsheng Zhu ◽  
Yuanyuan Zhao ◽  
Qiang Fu

The idling characteristic of the reactor coolant pump is one of the important indicators for the safe operation of the nuclear power system. The idling transition process of the reactor coolant pump under the power failure accident condition belongs to the transient flow process. During most of the time of the idling transition process, the parameters of flow, rotating speed, and head are all nonlinear changes, and the study of the idling change law is extremely difficult. This paper introduces the nonlinear inertia transient phase of the reactor coolant pump and the principle of wavelet analysis. Based on the experimental results of the idling transition process, the polynomial fitting of the flow curve and the rotating speed curve is fitted, and the idling transient equation is established which is a boundary condition for computational fluid dynamics simulation of the nonlinear idling transient stage of the reactor coolant pump with different types of guide vanes. The signal fluctuation of pressure pulsation time-domain change at the volute outlet in different sub-bands is analyzed by means of a fast, discrete wavelet transform, and the effects of different vane optimizations in different idling stages are analyzed. It was found that the pressure fluctuation amplitude of each sub-frequency range of pump outlet in the model of the shunt guide vane is significantly smaller than that of the normal guide vane.


Sensor Review ◽  
2020 ◽  
Vol 40 (4) ◽  
pp. 407-420
Author(s):  
Bo Li ◽  
Jian ming Wang ◽  
Qi Wang ◽  
Xiu yan Li ◽  
Xiaojie Duan

Purpose The purpose of this paper is to explore gas/liquid two-phase flow is widely existed in industrial fields, especially in chemical engineering. Electrical resistance tomography (ERT) is considered to be one of the most promising techniques to monitor the transient flow process because of its advantages such as fast respond speed and cross-section imaging. However, maintaining high resolution in space together with low cost is still challenging for two-phase flow imaging because of the ill-conditioning of ERT inverse problem. Design/methodology/approach In this paper, a sparse reconstruction (SR) method based on the learned dictionary has been proposed for ERT, to accurately monitor the transient flow process of gas/liquid two-phase flow in a pipeline. The high-level representation of the conductivity distributions for typical flow regimes can be extracted based on denoising the deep extreme learning machine (DDELM) model, which is used as prior information for dictionary learning. Findings The results from simulation and dynamic experiments indicate that the proposed algorithm efficiently improves the quality of reconstructed images as compared to some typical algorithms such as Landweber and SR-discrete fourier transformation/discrete cosine transformation. Furthermore, the SR-DDELM has also used to estimate the important parameters of the chemical process, a case in point is the volume flow rate. Therefore, the SR-DDELM is considered an ideal candidate for online monitor the gas/liquid two-phase flow. Originality/value This paper fulfills a novel approach to effectively monitor the gas/liquid two-phase flow in pipelines. One deep learning model and one adaptive dictionary are trained via the same prior conductivity, respectively. The model is used to extract high-level representation. The dictionary is used to represent the features of the flow process. SR and extraction of high-level representation are performed iteratively. The new method can obviously improve the monitoring accuracy and save calculation time.


1988 ◽  
Vol 110 (4) ◽  
pp. 262-268 ◽  
Author(s):  
T. D. Riney

The Gladys McCall geopressured reservoir consists of an interbedded sequence of relatively thick sands and thin shales. The lateral extent of the reservoir is not well defined. Gladys McCall Well No. 1 produced approximately 4.0×106 m3 (25×106 barrels) of brine from Sand Zone No. 8 from October 7, 1983 through May 1987. Analysis of the flow data from the well has led to the development of a conceptual model of the reservoir, which depends on cross-flow from sands overlying/underlying Sand Zone No. 8 for the observed pressure maintenance. The fluid source is remote from the well in the sense that the fluid from the neighboring sands must flow a long distance to find a vertical pathway around the intervening shale stringers in order to recharge Sand Zone No. 8. A reservoir simulation model based on the conceptual model provides an excellent match to the detailed downhole pressure buildup measurements made during the original Reservoir Limits Test and two subsequent short-term buildup tests. The model has also been employed to match the production history of the Gladys McCall No. 1 well and to predict future reservoir response. Nevertheless, the reservoir model employed is not unique and alternate models for pressure maintenance are also being investigated.


2021 ◽  
Author(s):  
Zheng Han ◽  
Guotong Ren ◽  
Rami M. Younis

Abstract In the context of remote sensing, the vast disparity in characteristic scales between seismic deformation (e.g. milliseconds) and transient flow (e.g. hours) allows a "two-model paradigm" for geophysics and reservoir simulation. In the context of flow-induced geohazard risk mitigation and micro-seismic data integration, this paradigm breaks down. Under micro-seismic deformation, events occur with high-frequency, and over sustained duration during which the rock-fluid coupling is significant. In risk mitigation scenarios, the onset of seismic deformation is directly tied to quasi-static coupling periods. This work develops an approach to reservoir simulation modeling that allows simultaneous resolution of transient (inertial) poromechanics and multiphase fluid flow in the presence of fracture. A mixed discretization scheme combining the extended finite element method (XFEM) and the embedded discrete fracture model (EDFM) is extended using a second-order implicit Newmark time integration scheme for the inertial mechanics. A Lagrange multiplier method is developed to model pressure-dependent contact traction in fractures. The contact constraints are adapted to accommodate fracture opening. Slip-weakening fracture friction models are incorporated. Finally, a time-step controller is proposed to combine local discretization error with contact traction and slip-rate control along the fractures. This strategy allows automatic adaptation to resolve quasi-static, inter-seismic triggering, and co-seismic spontaneous rupture periods within one model. The model is verified to simulate complete induced earthquake sequences, including inter-seismic and dynamic rupture phases. The performance of the adaptive model is illustrated for cases with various set-ups of production and injection periods in a fractured reservoir with explicit fracture representation.


Author(s):  
Yao Fu ◽  
Tong Wang ◽  
Chuangang Gu

In this article, jet influence on a gas–solid-multiphase channel flow was experimentally and numerically studied. The jet flow was found to have a diameter-selective controlling effect on the particles’ distribution. Jet flow formed a gas barrier in the channel for particles. While tiny particles could travel around and large particles could travel through, only particles on the 10 -µm scale were obviously affected. Three different calculation methods, Reynolds averaged Navier–Stokes, unsteady Reynolds averaged Navier–Stokes, and detached eddy simulation, were used to simulate this multiphase flow. By comparing the calculation results to the experimental results, it is found that all the three calculation methods could capture the basic phenomenon in the mean flow field. Nevertheless, there exist great differences in the transient flow field and particle distribution.


1962 ◽  
Vol 2 (04) ◽  
pp. 347-354 ◽  
Author(s):  
J.D. Pendergrass ◽  
V.J. Berry

Abstract Well pressure transient tests provide a means for directly obtaining information about formation pressure and reservoir flow capacity. Such tests have also been proposed for determining presence and location of faults or other reservoir closures and for measuring oil in place. For mathematical convenience, most theoretical studies have considered the reservoirs to be homogeneous. Definitive information is not yet available to show whether the actual presence of nonuniformities will make pressure transient behavior different from that of a uniform reservoir. The conclusions reached from actual transient tests are questionable, therefore, insofar as they rely on the original assumption of homogeneity. One type of nonuniformity commonly assumed to exist is that of stratification. In most reservoirs the strata are thought to be in vertical communication. Equations for the transient flow of a single-phase, compressible fluid in a one-well, bounded, circular reservoir have been solved for several situations involving cross flow between multiple strata of various thicknesses and permeabilities. The results show that except for the very early flow period, which usually is too short to be analyzed, the transient performance observed at the well is substantially identical with that of a homogeneous reservoir having the same dimensions and having the same steady-state flow capacity. Thus, stratification does not adversely affect interpretation of well transient tests. This conclusion holds for all commonly encountered combinations of reservoir thickness and external radius. Deviations are observed for unusually thick reservoirs whose outer radii are relatively small. The results of these studies also show that the presence and the amount of stratification cannot be simply diagnosed from reservoir pressure transient data when there is cross flow between strata. Introduction The last decade has brought wide acceptance of the transient well pressure test for determining reservoir parameters. Following the original work of Hurst and van Everdingen, the mathematical theory was thoroughly explored. Numerous authors have suggested how to determine static reservoir pressure, permeability-thickness product, original oil in place and reservoir limits for different reservoir geometry. The same mathematical techniques have been used to predict the transient performance of a reservoir over a long period of time. Most of the theoretical work has been for homogeneous, isotropic systems. Some results have also been presented for a homogeneous, anisotropic reservoir. Petroleum reservoirs are not homogeneous. The deposition process seems to favor creation of a stratified formation. This concept is sufficiently well accepted so that the most natural extension of the transient flow theory beyond the homogeneous case is to a stratified formation. Results for a stratified reservoir with no vertical communication between layers can be obtained from the results for a homogeneous reservoir. Lefkovitz, et al, have given a thorough treatment of the two-layer case. Two recent papers have treated the case of a two-layered reservoir with vertical communication or crossflow, between layers. Russell and Prats find that, after a relatively short time, the two-layered reservoir with cross flow exhibits a simple exponential pressure decline. From this time forward, the behavior is not distinguishable from the behavior of a homogeneous reservoir having the same steady-state flow capacity. The results of Katz and Tek are equivalent. Russell and Prats also speculate that a multilayered reservoir with crossflow will behave as a homogeneous system after long enough production time ".... providing the contrast in kh between layers is not too great". They also suggest that, at intermediate times, ".... the relative positions of the layers with respect to each other will have a great influence on the production behavior and on the time at which the previously mentioned large-time approximation might be valid".Katz and Tek remark upon the mathematical difficulty of treating a reservoir having many layers or strata. SPEJ P. 347^


2016 ◽  
Vol 8 (1) ◽  
pp. 014501 ◽  
Author(s):  
O. López ◽  
D. Meneses ◽  
B. Quintero ◽  
S. Laín

2005 ◽  
Vol 19 (01n03) ◽  
pp. 517-519 ◽  
Author(s):  
S. Y. WU ◽  
Y. R. LI ◽  
D. L. ZENG

Based on the exergo-economic analysis of low temperature heat exchanger heat transfer and flow process, a new exergo-economic criterion which is defined as the net profit per unit heat flux for cryogenic exergy recovery low temperature heat exchangers is put forward. The application of criterion is illustrated by the evaluation of down-flow, counter-flow and cross-flow low temperature heat exchangers performance.


Sign in / Sign up

Export Citation Format

Share Document