EXERGO-ECONOMIC PERFORMANCE EVALUATION ON LOW TEMPERATURE HEAT EXCHANGER

2005 ◽  
Vol 19 (01n03) ◽  
pp. 517-519 ◽  
Author(s):  
S. Y. WU ◽  
Y. R. LI ◽  
D. L. ZENG

Based on the exergo-economic analysis of low temperature heat exchanger heat transfer and flow process, a new exergo-economic criterion which is defined as the net profit per unit heat flux for cryogenic exergy recovery low temperature heat exchangers is put forward. The application of criterion is illustrated by the evaluation of down-flow, counter-flow and cross-flow low temperature heat exchangers performance.

2007 ◽  
Vol 21 (18n19) ◽  
pp. 3503-3505 ◽  
Author(s):  
S. Y. WU ◽  
X. F. YUAN ◽  
Y. R. Li ◽  
L. PENG

By analyzing exergy transfer process of the low temperature heat exchangers operating below the surrounding temperature, the concept of exergy transfer coefficient is put forward and the expressions which involving relevant variables for the exergy transfer coefficient, the heat transfer units number and the ratio of cold to hot fluids heat capacity rate, etc. are derived. Taking the parallel flow, counter flow and cross flow low temperature heat exchangers as examples, the numerical results of exergy transfer coefficient are given and the comparison of exergy transfer coefficient with heat transfer coefficient is analyzed.


Author(s):  
Shuang-Ying Wu ◽  
Xiao-Feng Yuan ◽  
You-Rong Li ◽  
Wen-Zhi Cui ◽  
Liao Quan

In this paper, the concept of exergy transfer effectiveness is put forward firstly and the expressions involving relevant variables for the exergy transfer effectiveness, the heat transfer units number and the ratio of cold and hot fluids heat capacity rate have been derived for the high and low temperature heat exchangers. Taking the parallel flow, counter flow and cross flow heat exchangers as examples, the numerical results of exergy transfer effectiveness are given and the comparison of exergy transfer effectiveness with heat transfer effectiveness is analyzed.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3497-3499 ◽  
Author(s):  
LAN PENG ◽  
YOU-RONG LI ◽  
SHUANG-YING WU ◽  
BO LAN

Based on the analyzing of the thermodynamic performance of the heat transfer process in the low temperature heat exchangers, the exergy efficiency of the heat transfer process is defined and a general expression for the exergy efficiency is derived, which can be used to discuss the effect of heat transfer units number and heat capacity ratio of fluids on the exergy efficiency of the low temperature heat exchanger. The variation of the exergy efficiency for several kinds of flow patterns in the low heat exchangers is compared and the calculating method of the optimal values of heat capacity ratio for the maximum exergy efficiency is given.


1991 ◽  
Vol 113 (4) ◽  
pp. 505-510 ◽  
Author(s):  
L. W. Swanson

An extended version of the Bejan model of irreversible power plants is proposed using a log-mean temperature difference (LMTD) representation for both the high and low-temperature heat exchangers. The analysis focuses on minimizing the irreversibilities associated with the hot and cold heat exchangers. The results indicate that the maximum power output, external conductance allocation ratio, and second law efficiency are functions of the number total heat exchanger transfer units (N), and are asymptotic to Bejan’s original results as N → O. This asymptote represents a global power output maximum and occurs for either extremely high cycle flow rates or cycle phase change processes in both heat exchangers. The LMTD representation also shows that under optimal conditions, more conductance should be allocated to the low-temperature heat exchanger as N increases.


Author(s):  
Ahmad Fakheri

The heat exchanger efficiency is defined as the ratio of the actual heat transfer in a heat exchanger to the optimum heat transfer rate. The optimum heat transfer rate, qopt, is given by the product of UA and the Arithmetic Mean Temperature Difference, which is the difference between the average temperatures of hot and cold fluids. The actual rate of heat transfer in a heat exchanger is always less than this optimum value, which takes place in an ideal balanced counter flow heat exchanger. It has been shown that for parallel flow, counter flow, and shell and tube heat exchanger the efficiency is only a function of a single nondimensional parameter called Fin Analogy Number. The function defining the efficiency of these heat exchangers is identical to that of a constant area fin with an insulated tip. This paper presents exact expressions for the efficiencies of the different cross flow heat exchangers. It is shown that by generalizing the definition of Fa, very accurate results can be obtained by using the same algebraic expression, or a single algebraic expression can be used to assess the performance of a variety of commonly used heat exchangers.


2018 ◽  
Vol 16 (2) ◽  
pp. 39
Author(s):  
Syukran Syukran

Abstrak Heat exchanger atau alat penukar panas adalah alat-alat yang digunakan untuk mengubah temperatur fluida atau mengubah fasa fluida dengan cara mempertukarkan panasnya dengan fluida lain. Pada sebuah penukar panas kemampuan mempertukarkan panas sangat ditentukan oleh tipe dan jenis aliran fluida yang melewati penukar panas. Secara garis besar penukar panas dibagi berdasarkan arah aliran fluidanya. Berdasarkan arah aliran fluida penukar panas  dibedakan menjadi 3 (tiga) jenis aliran, yaitu aliran searah (parallel flow), aliran berlawanan (counter flow) dan aliran silang (cross flow). Saat ini penukar panas banyak dipakai dalam  industri pengeringan produk-produk pertanian, perkebunan dan perikanan skala kecil dan menengah. Penggunaan penukar panas dalam bidang pengeringan saat ini sudah menjadi kebutuhan untuk mengatasi permasalahan produktifitas pengeringan. Umumnya penukar panas yang digunakan adalah tipe aliran berlawanan. Beberapa penelitian telah dilakukan untuk mengetahui efektifitas penukar panas tersebut yang umumnya berfokus pada jenis aliran berlawanan. Penelitian penelitian spesifik yang mengkaji perbandingan efisiensi penukar panas  untuk ketiga jenis aliran belum ditemukan. Penelitian ini dilakukan untuk mengetahui efisiensi temperatur penukar panas untuk jenis aliran jenis aliran melintang, sejajar, dan  berlawanan. Metode penelitian dilakukan fabrikasi 3 unit exchanger tipe gas-gas dengan dimensi 50 (P) x 10 (L) x 30 (T) dengan jumlah tube 17 susunan. Hasil  penelitian menunjukkan bahwa efisiensi temperatur untuk ketiga jenis penukar panas tersebut adalah 21,3% aliran melintang, 17,3% aliran berlawanan dan 15,9%  aliran sejajar. Hasil penelitian menyimpulkan bahwa efisiensi temperatur tertinggi diperoleh jenis penukar panas aliran melintang. Kata kunci : Penukar panas, aliran sejajar, aliran berlawanan, aliran silang, temperatur.  Abstrack Heat exchangers or heat exchangers are the means used to change the temperature of the fluid or to change the fluid phase by exchanging heat with other fluids. In a heat exchanger the heat exchange ability is greatly determined by the type and type of fluid flow passing through the heat exchanger. Broadly speaking the exchanger is divided based on the direction of fluid flow. Based on the direction of fluid flow exchanger is divided into 3 (three) types of flow, namely parallel flow, counter flow and cross flow. Currently, heat exchangers are widely used in the drying industry of small and medium-sized agricultural and small-scale plantation and fishery products. The use of exchangers in the field of drying is now a need to overcome the problems of drying productivity. Generally the exchanger used is the opposite flow type (counter flow). Several studies have been conducted to determine the effectiveness of these exchangers which generally focus on the opposite type of flow. Specific research studies that reviewed the efficiency of exchangers for the three types of flow have not been found. This research was conducted to find out the efficiency of heat exchanger temperature for flow type of cross flow, parallel flow and counter flow type. The research method was fabricated 3 units of gas-gas exchanger type with dimension 50 (P) x 10 (L) x 30 (T) with the number of tubes 17 staggered arrangement. The results show that the temperature efficiency for the three types of heat exchanger is 21.3% cross flow flow, 17.3% flow counter flow and 15.9% parallel flow flow. The results concluded that the highest temperature efficiency obtained by cross flow flow type exchanger. Keywords: Heat exchanger, parallel flow, counter flow, cross flow, temperature


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


2021 ◽  
Vol 9 (1) ◽  
pp. 60-71
Author(s):  
Abeth Novria Sonjaya ◽  
Marhaenanto Marhaenanto ◽  
Mokhamad Eka Faiq ◽  
La Ode M Firman

The processed wood industry urgently needs a dryer to improve the quality of its production. One of the important components in a dryer is a heat exchanger. To support a durable heat transfer process, a superior material is needed. The aim of the study was to analyze the effectiveness of the application of cross-flow flat plate heat exchangers to be used in wood dryers and compare the materials used and simulate heat transfer on cross-flow flat plate heat exchangers using Computational Fluid Dynamic simulations. The results showed that there was a variation in the temperature out of dry air and gas on the flat plate heat exchanger and copper material had a better heat delivery by reaching the temperature out of dry air and gas on the flat plate type heat exchanger of successive cross flow and.   overall heat transfer coefficient value and the effectiveness value of the heat exchanger of the heat transfer characteristics that occur with the cross-flow flat plate type heat exchanger in copper material of 251.74725 W/K and 0.25.


Author(s):  
Suneel Nagar ◽  
Ajay Singh ◽  
Deepak Patel

The objective of this study is to provide modern analytical and empirical tools for evaluation of the thermal-flow performance or design of air-cooled heat exchangers (ACHE) and cooling towers. This review consist various factors which effect the performance of ACHE. We introduced systematically to the literature, theory, and practice relevant to the performance evaluation and design of industrial cooling. Its provide better understanding of the performance characteristics of a heat exchanger, effectiveness can be improved in different operating conditions .The total cost of cycle can be reduced by increasing the effectiveness of heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document