scholarly journals Factors influencing oil recovery by surfactant–polymer flooding in conglomerate reservoirs and its quantitative calculation method

Author(s):  
Feng-Qi Tan ◽  
Chun-Miao Ma ◽  
Jian-Hua Qin ◽  
Xian-Kun Li ◽  
Wen-Tao Liu
2012 ◽  
Vol 512-515 ◽  
pp. 2439-2442 ◽  
Author(s):  
Yan Wang ◽  
Bao Wei Su ◽  
Xue Li Gao

Polyacrylamide (PAM) is an important polymer for oilfield flooding. The viscosity of PAM solution is very significant for polymer flooding to enhance oil recovery. The main factors which influence viscosity of PAM solution including polymer concentration, temperature, stirring rate, TDS and divalent cation ions were studied. The results showed that high stirring rate will reduce the viscosity of PAM solution; and the viscosity decreases gradually with temperature increasing; TDS and divalent cation ions also affect the viscosity of polymer solution greatly, the viscosity loss is more than 3% with the TDS increases by 1000 mg/L under the same concentration of divalent cation ions; the viscosity loss is around 20% with the concentration of divalent cation ions increase by 100 mg/L.


Author(s):  
D.Zh. Akhmed-Zaki ◽  
T.S. Imankulov ◽  
B. Matkerim ◽  
B.S. Daribayev ◽  
K.A. Aidarov ◽  
...  

2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Ruissein Mahon ◽  
Gbenga Oluyemi ◽  
Babs Oyeneyin ◽  
Yakubu Balogun

Abstract Polymer flooding is a mature chemical enhanced oil recovery method employed in oilfields at pilot testing and field scales. Although results from these applications empirically demonstrate the higher displacement efficiency of polymer flooding over waterflooding operations, the fact remains that not all the oil will be recovered. Thus, continued research attention is needed to further understand the displacement flow mechanism of the immiscible process and the rock–fluid interaction propagated by the multiphase flow during polymer flooding operations. In this study, displacement sequence experiments were conducted to investigate the viscosifying effect of polymer solutions on oil recovery in sandpack systems. The history matching technique was employed to estimate relative permeability, fractional flow and saturation profile through the implementation of a Corey-type function. Experimental results showed that in the case of the motor oil being the displaced fluid, the XG 2500 ppm polymer achieved a 47.0% increase in oil recovery compared with the waterflood case, while the XG 1000 ppm polymer achieved a 38.6% increase in oil recovery compared with the waterflood case. Testing with the motor oil being the displaced fluid, the viscosity ratio was 136 for the waterflood case, 18 for the polymer flood case with XG 1000 ppm polymer and 9 for the polymer flood case with XG 2500 ppm polymer. Findings also revealed that for the waterflood cases, the porous media exhibited oil-wet characteristics, while the polymer flood cases demonstrated water-wet characteristics. This paper provides theoretical support for the application of polymer to improve oil recovery by providing insights into the mechanism behind oil displacement. Graphic abstract Highlights The difference in shape of relative permeability curves are indicative of the effect of mobility control of each polymer concentration. The water-oil systems exhibited oil-wet characteristics, while the polymer-oil systems demonstrated water-wet characteristics. A large contrast in displacing and displaced fluid viscosities led to viscous fingering and early water breakthrough.


2021 ◽  
Vol 48 (1) ◽  
pp. 169-178
Author(s):  
Xiangguo LU ◽  
Bao CAO ◽  
Kun XIE ◽  
Weijia CAO ◽  
Yigang LIU ◽  
...  

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 55-60
Author(s):  
Wenting Dong ◽  
Dong Zhang ◽  
Keliang Wang ◽  
Yue Qiu

AbstractPolymer flooding technology has shown satisfactorily acceptable performance in improving oil recovery from unconsolidated sandstone reservoirs. The adsorption of the polymer in the pore leads to the increase of injection pressure and the decrease of suction index, which affects the effect of polymer flooding. In this article, the water and oil content of polymer blockages, which are taken from Bohai Oilfield, are measured by weighing method. In addition, the synchronous thermal analyzer and Fourier transform infrared spectroscopy (FTIR) are used to evaluate the composition and functional groups of the blockage, respectively. Then the core flooding experiments are also utilized to assess the effect of polymer plugs on reservoir properties and optimize the best degradant formulation. The results of this investigation show that the polymer adsorption in core after polymer flooding is 0.0068 g, which results in a permeability damage rate of 74.8%. The degradation ability of the agent consisting of 1% oxidizer SA-HB and 10% HCl is the best, the viscosity of the system decreases from 501.7 to 468.5 mPa‧s.


2015 ◽  
Vol 105 (01-02) ◽  
pp. 65-71
Author(s):  
A. Martini ◽  
A. Rohe ◽  
U. Stache ◽  
F. Trenker

Die Komplexität bei der Planung und Optimierung von Routenzugsystemen ist auf die Vielzahl der unterschiedlichen Gestaltungsmöglichkeiten und auf Interdependenzen zwischen den Einflussfaktoren zurückzuführen. Die im Fachartikel vorgestellte Verfahrensweise zur Einflussstärkenberechnung verschiedener Dimensionierungsparameter dient der Rangfolgebildung systemspezifischer Einflussfaktoren. Durch quantitativ-explorative Untersuchungen werden zudem Hypothesen für weitere Arbeiten gewonnen.   The complexity of planning and optimizing internal milkrun systems is a consequence of the multitude of different design options and interdependencies between the factors of influence. The calculation method for measuring the influence of different dimensioning parameters presented in this article serves to rank system-specific influence factors. Hypotheses for further research are obtained via quantitative-exploratory studies.


Sign in / Sign up

Export Citation Format

Share Document