Potent antiviral activity of the extract of Elaeocarpus sylvestris against influenza A virus in vitro and in vivo

Phytomedicine ◽  
2021 ◽  
pp. 153892
Author(s):  
Yong-Hyun Joo ◽  
Yeong-Geun Lee ◽  
Younghyun Lim ◽  
Hoyeon Jeon ◽  
Eui Ho Kim ◽  
...  
2014 ◽  
Vol 5 ◽  
Author(s):  
Emanuel Haasbach ◽  
Carmen Hartmayer ◽  
Alice Hettler ◽  
Alicja Sarnecka ◽  
Ulrich Wulle ◽  
...  

2016 ◽  
Vol 185 ◽  
pp. 327-340 ◽  
Author(s):  
Amin Haghani ◽  
Parvaneh Mehrbod ◽  
Nikoo Safi ◽  
Nur Ain Aminuddin ◽  
Azadeh Bahadoran ◽  
...  

2015 ◽  
Vol 2 (2) ◽  
pp. 47-51 ◽  
Author(s):  
Bai Wei ◽  
Se-Yeoun Cha ◽  
Min Kang ◽  
Young Jin Kim ◽  
Chang-Won Cho ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 581 ◽  
Author(s):  
Yejin Jang ◽  
Jin Soo Shin ◽  
Joo-Youn Lee ◽  
Heegwon Shin ◽  
Sang Jick Kim ◽  
...  

Influenza A virus, one of the major human respiratory pathogens, is responsible for annual seasonal endemics and unpredictable periodic pandemics. Despite the clinical availability of vaccines and antivirals, the antigenic diversity and drug resistance of this virus makes it a persistent threat to public health, underlying the need for the development of novel antivirals. In a cell culture-based high-throughput screen, a β2-adrenergic receptor agonist, nylidrin, was identified as an antiviral compound against influenza A virus. The molecule was effective against multiple isolates of subtype H1N1, but had limited activity against subtype H3N2, depending on the strain. By examining the antiviral activity of its chemical analogues, we found that ifenprodil and clenbuterol also had reliable inhibitory effects against A/H1N1 strains. Field-based pharmacophore modeling with comparisons of active and inactive compounds revealed the importance of positive and negative electrostatic patterns of phenyl aminoethanol derivatives. Time-of-addition experiments and visualization of the intracellular localization of nucleoprotein NP demonstrated that an early step of the virus life cycle was suppressed by nylidrin. Ultimately, we discovered that nylidrin targets hemagglutinin 2 (HA2)-mediated membrane fusion by blocking conformational change of HA at acidic pH. In a mouse model, preincubation of a mouse-adapted influenza A virus (H1N1) with nylidrin completely blocked intranasal viral infection. The present study suggests that nylidrin could provide a core chemical skeleton for the development of a direct-acting inhibitor of influenza A virus entry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eun-Bin Kwon ◽  
You-Chang Oh ◽  
Youn-Hwan Hwang ◽  
Wei Li ◽  
Seok-Man Park ◽  
...  

OCD20015-V009 is an herbal mix of water-extracted Ginseng Radix, Poria (Hoelen), Rehmanniae Radix, Adenophorae Radix, Platycodi Radix, Crataegii Fructus, and Astragali Radix. In this study, its in vitro and in vivo antiviral activity and mechanisms against the influenza A virus were evaluated using a GFP-tagged influenza A virus (A/PR/8/34-GFP) to infect murine macrophages. We found that OCD20015-V009 pre-treatment substantially reduced A/PR/8/34-GFP replication. Also, OCD20015-V009 pre-treatment increased the phosphorylation of type-I IFN-related proteins TBK-1 and STAT1 and the secretion of pro-inflammatory cytokines TNF-α and IL-6 by murine macrophages. Moreover, OCD20015-V009 prophylactic administration increased IFN-stimulated genes-related 15, 20, and 56 and IFN-β mRNA in vitro. Thus, OCD20015-V009 likely modulates murine innate immune response via macrophages. This finding is potentially useful for developing prophylactics or therapeutics against the influenza A virus. Furthermore, pre-treatment with OCD20015-V009 decreased the mortality of the mice exposed to A/PR/8/34-GFP by 20% compared to that in the untreated animals. Thus, OCD20015-V009 stimulates the antiviral response in murine macrophages and mice to viral infections. Additionally, we identified chlorogenic acid and ginsenoside Rd as the antiviral components in OCD20015-V009. Further investigations are needed to elucidate the protective effects of active components of OCD20015-V009 against influenza A viruses.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 278
Author(s):  
Zhenya Wang ◽  
Jieyu Fang ◽  
Jiao Luo ◽  
Duoduo Hou ◽  
Yayun Tan ◽  
...  

Influenza A virus is a highly variable and contagious respiratory pathogen that can cause annual epidemics and it poses an enormous threat to public health. Therefore, there is an urgent need for a new generation of antiviral drugs to combat the emergence of drug-resistant strains of the influenza virus. A novel series of butene lactone derivatives were screened and the compound 3D was selected, as it exhibited in vitro potential antiviral activity against A/Weiss/43 H1N1 virus with low toxicity. In addition, 3D dose-dependently inhibited the viral replication, expression of viral mRNA and viral proteins. 3D exerted a suppressive effect on A/Virginia/ATCC2/2009 H1N1 and A/California/2/2014 H3N2 in vitro. The time-of-addition analysis indicated that 3D suppressed H1N1 in the early stage of its life cycle. A/Weiss/43 H1N1-induced apoptosis in A549 cells was reduced by 3D via the mitochondrial apoptosis pathway. 3D could decrease the production of H1N1-induced pro-inflammatory cytokines that are induced by H1N1 in vitro and in vivo. The administration of 3D reduced lung lesions and virus load in vivo. These results suggest that 3D, which is a butene lactone derivative, is a promising agent for the treatment of influenza A virus infection.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1630 ◽  
Author(s):  
Junu A. George ◽  
Shaikha H. AlShamsi ◽  
Maryam H. Alhammadi ◽  
Ahmed R. Alsuwaidi

Influenza A virus (IAV) and respiratory syncytial virus (RSV) are leading causes of childhood infections. RSV and influenza are competitive in vitro. In this study, the in vivo effects of RSV and IAV co-infection were investigated. Mice were intranasally inoculated with RSV, with IAV, or with both viruses (RSV+IAV and IAV+RSV) administered sequentially, 24 h apart. On days 3 and 7 post-infection, lung tissues were processed for viral loads and immune cell populations. Lung functions were also evaluated. Mortality was observed only in the IAV+RSV group (50% of mice did not survive beyond 7 days). On day 3, the viral loads in single-infected and co-infected mice were not significantly different. However, on day 7, the IAV titer was much higher in the IAV+RSV group, and the RSV viral load was reduced. CD4 T cells were reduced in all groups on day 7 except in single-infected mice. CD8 T cells were higher in all experimental groups except the RSV-alone group. Increased airway resistance and reduced thoracic compliance were demonstrated in both co-infected groups. This model indicates that, among all the infection types we studied, infection with IAV followed by RSV is associated with the highest IAV viral loads and the most morbidity and mortality.


2014 ◽  
Vol 455 (1) ◽  
pp. 80-83 ◽  
Author(s):  
P. G. Deryabin ◽  
G. A. Galegov ◽  
I. D. Konstantinova ◽  
I. S. Muzyka ◽  
A. I. Miroshnikov ◽  
...  

2020 ◽  
Author(s):  
Mengwei Li ◽  
Yuxu Wang ◽  
Jing Jin ◽  
Jie Dou ◽  
Qinglong Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document