Complex dynamics in a singular Leslie–Gower predator–prey bioeconomic model with time delay and stochastic fluctuations

2014 ◽  
Vol 404 ◽  
pp. 180-191 ◽  
Author(s):  
Yue Zhang ◽  
Qingling Zhang ◽  
Xing-Gang Yan
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yue Zhang ◽  
Qingling Zhang

This study investigates a singular delayed predator-prey bioeconomic model with stochastic fluctuations, which is described by differential-algebraic equations because of economic factors. The interior equilibrium of the singular delayed predator-prey bioeconomic model switches from being stable to unstable and then back to being stable, with the increase in time delay. The critical values for stability switches and Hopf bifurcations can be analytically determined. Subsequently, the effect of a fluctuating environment on the singular stochastic delayed predator-prey bioeconomic model obtained by introducing Gaussian white noise terms to the aforementioned deterministic model system is discussed. The fluctuation intensity of the population and harvest effort are calculated by Fourier transform method. Numerical simulation results are presented to verify the effectiveness of the conclusions.


2021 ◽  
Vol 6 (2) ◽  
pp. 885
Author(s):  
Wan Natasha Wan Hussin ◽  
Rohana Embong ◽  
Che Noorlia Noor

In the marine ecosystem, the time delay or lag may occur in the predator response function, which measures the rate of capture of prey by a predator. This is because, when the growth of the prey population is null at the time delay period, the predator’s growth is affected by its population and prey population densities only after the time delay period. Therefore, the generalized Gause type predator-prey fishery models with a selective proportional harvesting rate of fish and time lag in the Holling type II predator response function are proposed to simulate and solve the population dynamical problem. From the mathematical analysis of the models, a certain dimension of time delays in the predator response or reaction function can change originally stable non-trivial critical points to unstable ones. This is due to the existence of the Hopf bifurcation that measures the critical values of the time lag, which will affect the stabilities of the non-trivial critical points of the models. Therefore, the effects of increasing and decreasing the values of selective proportional harvesting rate terms of prey and predator on the stabilities of the non-trivial critical points of the fishery models were analysed. Results have shown that, by increasing the values of the total proportion of prey and predator harvesting denoted by qx Ex and qy Ey respectively, within the range 0.3102 ≤ qx Ex ≤ 0.9984 and 0.5049 ≤ qy Ey ≤ 0.5363, the originally unstable non-trivial critical points of the fishery models can be stable.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Fuzhen Wu ◽  
Dongfeng Li

This paper is concerned with the minimal wave speed of traveling wave solutions in a predator-prey system with distributed time delay, which does not satisfy comparison principle due to delayed intraspecific terms. By constructing upper and lower solutions, we obtain the existence of traveling wave solutions when the wave speed is the minimal wave speed. Our results complete the known conclusions and show the precisely asymptotic behavior of traveling wave solutions.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Yakui Xue ◽  
Xiafeng Duan

We invest a predator-prey model of Holling type-IV functional response with stage structure and double delays due to maturation time for both prey and predator. The dynamical behavior of the system is investigated from the point of view of stability switches aspects. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attacks the mature prey. Based on some comparison arguments, sharp threshold conditions which are both necessary and sufficient for the global stability of the equilibrium point of predator extinction are obtained. The most important outcome of this paper is that the variation of predator stage structure can affect the existence of the interior equilibrium point and drive the predator into extinction by changing the maturation (through-stage) time delay. Our linear stability work and numerical results show that if the resource is dynamic, as in nature, there is a window in maturation time delay parameters that generate sustainable oscillatory dynamics.


2006 ◽  
Vol 14 (03) ◽  
pp. 387-412 ◽  
Author(s):  
ALAKES MAITI ◽  
G. P. SAMANTA

Complex dynamics of a tritrophic food chain model is discussed in this paper. The model is composed of a logistic prey, a classical Lotka-Volterra functional response for prey-predator and a ratio-dependent functional response for predator-superpredator. Dynamical behaviors such as boundedness, stability and bifurcation of the model are studied critically. The effect of discrete time-delay on the model is investigated. Computer simulation of various solutions is presented to illustrate our mathematical findings. How these ideas illuminate some of the observed properties of real populations in the field is discussed and practical implications are explored.


Sign in / Sign up

Export Citation Format

Share Document