scholarly journals Community detection algorithm evaluation with ground-truth data

2018 ◽  
Vol 492 ◽  
pp. 651-706 ◽  
Author(s):  
Malek Jebabli ◽  
Hocine Cherifi ◽  
Chantal Cherifi ◽  
Atef Hamouda
Author(s):  
Himansu Sekhar Pattanayak ◽  
Harsh K. Verma ◽  
Amrit Lal Sangal

Community detection is a pivotal part of network analysis and is classified as an NP-hard problem. In this paper, a novel community detection algorithm is proposed, which probabilistically predicts communities’ diameter using the local information of random seed nodes. The gravitation method is then applied to discover communities surrounding the seed nodes. The individual communities are combined to get the community structure of the whole network. The proposed algorithm, named as Local Gravitational community detection algorithm (LGCDA), can also work with overlapping communities. LGCDA algorithm is evaluated based on quality metrics and ground-truth data by comparing it with some of the widely used community detection algorithms using synthetic and real-world networks.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Mei Chen ◽  
Zhichong Yang ◽  
Xiaofang Wen ◽  
Mingwei Leng ◽  
Mei Zhang ◽  
...  

Community detection is helpful to understand useful information in real-world networks by uncovering their natural structures. In this paper, we propose a simple but effective community detection algorithm, called ACC, which needs no heuristic search but has near-linear time complexity. ACC defines a novel similarity which is different from most common similarity definitions by considering not only common neighbors of two adjacent nodes but also their mutual exclusive degree. According to this similarity, ACC groups nodes together to obtain the initial community structure in the first step. In the second step, ACC adjusts the initial community structure according to cores discovered through a new local density which is defined as the influence of a node on its neighbors. The third step expands communities to yield the final community structure. To comprehensively demonstrate the performance of ACC, we compare it with seven representative state-of-the-art community detection algorithms, on small size networks with ground-truth community structures and relatively big-size networks without ground-truth community structures. Experimental results show that ACC outperforms the seven compared algorithms in most cases.


2019 ◽  
Vol 30 (04) ◽  
pp. 1950021
Author(s):  
Jinfang Sheng ◽  
Kai Wang ◽  
Zejun Sun ◽  
Jie Hu ◽  
Bin Wang ◽  
...  

In recent years, community detection has gradually become a hot topic in the complex network data mining field. The research of community detection is helpful not only to understand network topology structure but also to explore network hiding function. In this paper, we improve FluidC which is a novel community detection algorithm based on fluid propagation, by ameliorating the quality of seed set based on positive feedback and determining the node update order. We first summarize the shortcomings of FluidC and analyze the reasons result in these drawbacks. Then, we took some effective measures to overcome them and proposed an efficient community detection algorithm, called FluidC+. Finally, experiments on the generated network and real-world network show that our method not only greatly improves the performance of the original algorithm FluidC but also is better than many state-of-the-art algorithms, especially in the performance on real-world network with ground truth.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 680
Author(s):  
Hanyang Lin ◽  
Yongzhao Zhan ◽  
Zizheng Zhao ◽  
Yuzhong Chen ◽  
Chen Dong

There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Srinivasan Iyengar ◽  
Stephen Lee ◽  
David Irwin ◽  
Prashant Shenoy ◽  
Benjamin Weil

Buildings consume over 40% of the total energy in modern societies, and improving their energy efficiency can significantly reduce our energy footprint. In this article, we present WattScale, a data-driven approach to identify the least energy-efficient buildings from a large population of buildings in a city or a region. Unlike previous methods such as least-squares that use point estimates, WattScale uses Bayesian inference to capture the stochasticity in the daily energy usage by estimating the distribution of parameters that affect a building. Further, it compares them with similar homes in a given population. WattScale also incorporates a fault detection algorithm to identify the underlying causes of energy inefficiency. We validate our approach using ground truth data from different geographical locations, which showcases its applicability in various settings. WattScale has two execution modes—(i) individual and (ii) region-based, which we highlight using two case studies. For the individual execution mode, we present results from a city containing >10,000 buildings and show that more than half of the buildings are inefficient in one way or another indicating a significant potential from energy improvement measures. Additionally, we provide probable cause of inefficiency and find that 41%, 23.73%, and 0.51% homes have poor building envelope, heating, and cooling system faults, respectively. For the region-based execution mode, we show that WattScale can be extended to millions of homes in the U.S. due to the recent availability of representative energy datasets.


Sign in / Sign up

Export Citation Format

Share Document