Relationship between electron flux and electron complexity in a disordered Dirac comb

2021 ◽  
Vol 564 ◽  
pp. 125499
Author(s):  
A.A. Heredia ◽  
C.V. Landauro ◽  
H. Nowak
Keyword(s):  
Author(s):  
David C. Joy

In a crystalline solid the regular arrangement of the lattice structure influences the interaction of the incident beam with the specimen, leading to changes in both the transmitted and backscattered signals when the angle of incidence of the beam to the specimen is changed. For the simplest case the electron flux inside the specimen can be visualized as the sum of two, standing wave distributions of electrons (Fig. 1). Bloch wave 1 is concentrated mainly between the atom rows and so only interacts weakly with them. It is therefore transmitted well and backscattered weakly. Bloch wave 2 is concentrated on the line of atom centers and is therefore transmitted poorly and backscattered strongly. The ratio of the excitation of wave 1 to wave 2 varies with the angle between the incident beam and the crystal structure.


Author(s):  
K. Izui ◽  
S. Furuno ◽  
H. Otsu ◽  
T. Nishida ◽  
H. Maeta

Anisotropy of damage productions in crystals due to high energy electron bombardment are caused from two different origins. One is an anisotropic displacement threshold energy, and the other is an anisotropic distribution of electron flux near the atomic rows in crystals due to the electron channeling effect. By the n-beam dynamical calculations for germanium and molybdenum we have shown that electron flux at the atomic positions are from ∽4 to ∽7 times larger than the mean incident flux for the principal zone axis directions of incident 1 MeV electron beams, and concluded that such a locally increased electron flux results in an enhanced damage production. The present paper reports the experimental evidence for the enhanced damage production due to the locally increased electron flux and also the results of measurements of the displacement threshold energies for the <100>,<110> and <111> directions in molybdenum crystals by using a high voltage electron microscope.


2021 ◽  
Author(s):  
Daniel P. Engelhart ◽  
Vanessa J. Murray ◽  
Elena A. Plis ◽  
Karin Fulford ◽  
Dale C. Ferguson ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


Author(s):  
Elena Buratin ◽  
Vincent Baglin ◽  
Bernard Henrist ◽  
Paolo Chiggiato ◽  
Ambrogio Fasoli

2021 ◽  
Vol 63 (9) ◽  
pp. 1615-1621
Author(s):  
V. M. Lisitsyn ◽  
L. A. Lisitsyna ◽  
M. G. Golkovskii ◽  
D. A. Musakhanov ◽  
A. V. Ermolaev

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tuomas Huokko ◽  
Tao Ni ◽  
Gregory F. Dykes ◽  
Deborah M. Simpson ◽  
Philip Brownridge ◽  
...  

AbstractHow thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections. The newly synthesized thylakoid membrane fragments emerge between the plasma membrane and pre-existing thylakoids. Photosystem I monomers appear in the thylakoid membranes earlier than other mature photosystem assemblies, followed by generation of Photosystem I trimers and Photosystem II complexes. Redistribution of photosynthetic complexes during thylakoid biogenesis ensures establishment of the spatial organization of the functional thylakoid network. This study provides insights into the dynamic biogenesis process and maturation of the functional photosynthetic machinery.


Radio Science ◽  
1971 ◽  
Vol 6 (2) ◽  
pp. 305-313 ◽  
Author(s):  
E. G. Shelley ◽  
R. G. Johnson ◽  
R. D. Sharp

Sign in / Sign up

Export Citation Format

Share Document