Determination of the three-dimensional diffusion optimal path

Author(s):  
Jing Wang ◽  
Chunyang Wang ◽  
Lidong Xiao ◽  
Haijun Ma ◽  
Panpan Zhang ◽  
...  
Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 61
Author(s):  
Bernardo T. Lopes ◽  
Ashkan Eliasy ◽  
Mohamed Elhalwagy ◽  
Riccardo Vinciguerra ◽  
Fangjun Bao ◽  
...  

This study aims to describe a new universal method to identify the relative three-dimensional directions of visual, pupillary, and optical axes of the eye and the angles between them using topography elevation data. The method was validated in a large clinical cohort, and ethnical differences were recorded. Topography elevation data were collected from 1992 normal eyes of 966 healthy participants in Italy, Brazil, and China. The three main axes were defined as follows: optical axis (OA) was defined as the optimal path of light that passes through the ocular system without refraction. The pupillary axis (PA) line was defined using X and Y coordinates of the pupil centre with the chamber depth, in addition to the centre of a sphere fitted to the central 3 mm diameter of the cornea. The visual axis (VA) was taken by its best approximation, the coaxially sighted corneal light reflex. The alpha angle was measured between the VA and OA, and the kappa angle between the VA and PA. The average values of kappa and alpha angles were 3.41 ± 2.84 and 6.04 ± 2.43 in the Italian population, 2.6 ± 1.53 and 5.87 ± 2.3 in the Brazilian population, and 2.09 ± 1.22 and 3.85 ± 1.48 in the Chinese population.


2005 ◽  
Vol 53 (6) ◽  
pp. 1333-1340 ◽  
Author(s):  
Anneriet M. Heemskerk ◽  
Gustav J. Strijkers ◽  
Anna Vilanova ◽  
Maarten R. Drost ◽  
Klaas Nicolay

Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


2013 ◽  
Vol 19 (S5) ◽  
pp. 58-61 ◽  
Author(s):  
Mino Yang ◽  
Jun-Ho Lee ◽  
Hee-Goo Kim ◽  
Euna Kim ◽  
Young-Nam Kwon ◽  
...  

AbstractDistribution of wax in laser printer toner was observed using an ultra-high-voltage (UHV) and a medium-voltage transmission electron microscope (TEM). As the radius of the wax spans a hundred to greater than a thousand nanometers, its three-dimensional recognition via TEM requires large depth of focus (DOF) for a volumetric specimen. A tomogram with a series of the captured images would allow the determination of their spatial distribution. In this study, bright-field (BF) images acquired with UHV-TEM at a high tilt angle prevented the construction of the tomogram. Conversely, the Z-contrast images acquired by the medium-voltage TEM produced a successful tomogram. The spatial resolution for both is discussed, illustrating that the image degradation was primarily caused by beam divergence of the Z-contrast image and the combination of DOF and chromatic aberration of the BF image from the UHV-TEM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Chen ◽  
Xun Chen ◽  
R. Glenn Hepfer ◽  
Brooke J. Damon ◽  
Changcheng Shi ◽  
...  

AbstractDiffusion is a major molecular transport mechanism in biological systems. Quantifying direction-dependent (i.e., anisotropic) diffusion is vitally important to depicting how the three-dimensional (3D) tissue structure and composition affect the biochemical environment, and thus define tissue functions. However, a tool for noninvasively measuring the 3D anisotropic extracellular diffusion of biorelevant molecules is not yet available. Here, we present light-sheet imaging-based Fourier transform fluorescence recovery after photobleaching (LiFT-FRAP), which noninvasively determines 3D diffusion tensors of various biomolecules with diffusivities up to 51 µm2 s−1, reaching the physiological diffusivity range in most biological systems. Using cornea as an example, LiFT-FRAP reveals fundamental limitations of current invasive two-dimensional diffusion measurements, which have drawn controversial conclusions on extracellular diffusion in healthy and clinically treated tissues. Moreover, LiFT-FRAP demonstrates that tissue structural or compositional changes caused by diseases or scaffold fabrication yield direction-dependent diffusion changes. These results demonstrate LiFT-FRAP as a powerful platform technology for studying disease mechanisms, advancing clinical outcomes, and improving tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document