Modulated wave pattern stability in chain neural networks under high-low frequency magnetic radiation

Author(s):  
C. Ntahkie Takembo ◽  
P. Nyifeh ◽  
H.P. Ekobena Fouda ◽  
T.C. Kofane
2021 ◽  
Vol 4 ◽  
Author(s):  
Stefano Markidis

Physics-Informed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network. PINNs have emerged as a new essential tool to solve various challenging problems, including computing linear systems arising from PDEs, a task for which several traditional methods exist. In this work, we focus first on evaluating the potential of PINNs as linear solvers in the case of the Poisson equation, an omnipresent equation in scientific computing. We characterize PINN linear solvers in terms of accuracy and performance under different network configurations (depth, activation functions, input data set distribution). We highlight the critical role of transfer learning. Our results show that low-frequency components of the solution converge quickly as an effect of the F-principle. In contrast, an accurate solution of the high frequencies requires an exceedingly long time. To address this limitation, we propose integrating PINNs into traditional linear solvers. We show that this integration leads to the development of new solvers whose performance is on par with other high-performance solvers, such as PETSc conjugate gradient linear solvers, in terms of performance and accuracy. Overall, while the accuracy and computational performance are still a limiting factor for the direct use of PINN linear solvers, hybrid strategies combining old traditional linear solver approaches with new emerging deep-learning techniques are among the most promising methods for developing a new class of linear solvers.


2018 ◽  
Vol 91 ◽  
pp. 176-191 ◽  
Author(s):  
Matteo Simoncini ◽  
Leonardo Taccari ◽  
Francesco Sambo ◽  
Luca Bravi ◽  
Samuele Salti ◽  
...  

2019 ◽  
Vol 96 (2) ◽  
pp. 1083-1093 ◽  
Author(s):  
C. N. Takembo ◽  
A. Mvogo ◽  
H. P. Ekobena Fouda ◽  
T. C. Kofané

2021 ◽  
Vol 8 (1) ◽  
pp. 105-118
Author(s):  
Yakun Ju ◽  
Yuxin Peng ◽  
Muwei Jian ◽  
Feng Gao ◽  
Junyu Dong

AbstractPhotometric stereo aims to reconstruct 3D geometry by recovering the dense surface orientation of a 3D object from multiple images under differing illumination. Traditional methods normally adopt simplified reflectance models to make the surface orientation computable. However, the real reflectances of surfaces greatly limit applicability of such methods to real-world objects. While deep neural networks have been employed to handle non-Lambertian surfaces, these methods are subject to blurring and errors, especially in high-frequency regions (such as crinkles and edges), caused by spectral bias: neural networks favor low-frequency representations so exhibit a bias towards smooth functions. In this paper, therefore, we propose a self-learning conditional network with multi-scale features for photometric stereo, avoiding blurred reconstruction in such regions. Our explorations include: (i) a multi-scale feature fusion architecture, which keeps high-resolution representations and deep feature extraction, simultaneously, and (ii) an improved gradient-motivated conditionally parameterized convolution (GM-CondConv) in our photometric stereo network, with different combinations of convolution kernels for varying surfaces. Extensive experiments on public benchmark datasets show that our calibrated photometric stereo method outperforms the state-of-the-art.


Author(s):  
Martina. A. Obst ◽  
Arkan Al-Zubaidi ◽  
Marcus Heldmann ◽  
Janis Marc Nolde ◽  
Nick Blümel ◽  
...  

AbstractInvasive and transcutaneous vagus nerve stimulation [(t)-VNS] have been used to treat epilepsy, depression and migraine and has also shown effects on metabolism and body weight. To what extent this treatment shapes neural networks and how such network changes might be related to treatment effects is currently unclear. Using a pre-post mixed study design, we applied either a tVNS or sham stimulation (5 h/week) in 34 overweight male participants in the context of a study designed to assess effects of tVNS on body weight and metabolic and cognitive parameters resting state (rs) fMRI was measured about 12 h after the last stimulation period. Support vector machine (SVM) classification was applied to fractional amplitude low-frequency fluctuations (fALFF) on established rs-networks. All classification results were controlled for random effects and overfitting. Finally, we calculated multiple regressions between the classification results and reported food craving. We found a classification accuracy (CA) of 79 % in a subset of four brainstem regions suggesting that tVNS leads to lasting changes in brain networks. Five of eight salience network regions yielded 76,5 % CA. Our study shows tVNS’ post-stimulation effects on fALFF in the salience rs-network. More detailed investigations of this effect and their relationship with food intake seem reasonable for future studies.


Sign in / Sign up

Export Citation Format

Share Document