Phase diagram of ZrZn2 at high pressure: Low-temperature features and elusive superconductivity

2006 ◽  
Vol 378-380 ◽  
pp. 411-412 ◽  
Author(s):  
Sergei M. Stishov ◽  
Vladimir A. Sidorov ◽  
Anatoly V. Tsvyashchenko ◽  
Eric D. Bauer ◽  
Alla E. Petrova ◽  
...  
2015 ◽  
Vol 107 (22) ◽  
pp. 221908 ◽  
Author(s):  
Serge Desgreniers ◽  
John S. Tse ◽  
Takahiro Matsuoka ◽  
Yasuo Ohishi ◽  
Quan Li ◽  
...  

Author(s):  
Markus Guido Herrmann ◽  
Ralf Peter Stoffel ◽  
Michael Küpers ◽  
Mohammed Ait Haddouch ◽  
Andreas Eich ◽  
...  

The high-pressure and low-temperature behaviour of the GeSe x Te1−x system (x = 0, 0.2, 0.5, 0.75, 1) was studied using a combination of powder diffraction measurements and first-principles calculations. Compounds in the stability field of the GeTe structure type (x = 0, 0.2, 0.5) follow the high-pressure transition pathway: GeTe-I (R3m) → GeTe-II (f.c.c.) → GeTe-III (Pnma). The newly determined GeTe-III structure is isostructural to β-GeSe, a high-pressure and high-temperature polymorph of GeSe. Pressure-dependent formation enthalpies and stability regimes of the GeSe x Te1−x polymorphs were studied by DFT calculations. Hexagonal Ge4Se3Te is stable up to at least 25 GPa. Significant differences in the high-pressure and low-temperature behaviour of the GeTe-type structures and the hexagonal phase are highlighted. The role of Ge...Ge interactions is elucidated using the crystal orbital Hamilton population method. Finally, a sketch of the high-pressure phase diagram of the system is provided.


2000 ◽  
Vol 19 (1-6) ◽  
pp. 191-199 ◽  
Author(s):  
J. M. Chourot ◽  
A. Le Bail ◽  
D. Chevalier

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
K. W. Köster ◽  
V. Fuentes-Landete ◽  
A. Raidt ◽  
M. Seidl ◽  
C. Gainaru ◽  
...  

Abstract The pressure–temperature phase diagram of ice displays a perplexing variety of structurally distinct phases. In the century-long history of scientific research on ice, the proton-ordered ice phases numbered XIII through XV were discovered only recently. Despite considerable effort, none of the transitions leading from the low-temperature ordered ices VIII, IX, XI, XIII, XIV and XV to their high-temperature disordered counterparts were experimentally found to display the full Pauling entropy. Here we report calorimetric measurements on suitably high-pressure-treated, hydrogen chloride-doped ice XIV that demonstrate at the maximum 60% of the Pauling entropy is released at the transition to ice XII. Dielectric spectroscopy on undoped and on variously doped ice XII crystals reveals that addition of hydrogen chloride, the agent triggering complete proton order in ice XIV, enhances the precursor dynamics strongest. These discoveries provide new insights into the puzzling observation that different dopants trigger the formation of different proton-ordered ice phases.


2021 ◽  
pp. 160309
Author(s):  
M. Osorio-García ◽  
K. Suárez-Alcántara ◽  
Y. Todaka ◽  
A. Tejeda-Ochoa ◽  
M. Herrera Ramírez ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carla Lupo ◽  
Evan Sheridan ◽  
Edoardo Fertitta ◽  
David Dubbink ◽  
Chris J. Pickard ◽  
...  

AbstractUsing spin-assisted ab initio random structure searches, we explore an exhaustive quantum phase diagram of archetypal interfaced Mott insulators, i.e. lanthanum-iron and lanthanum-titanium oxides. In particular, we report that the charge transfer induced by the interfacial electronic reconstruction stabilises a high-spin ferrous Fe2+ state. We provide a pathway to control the strength of correlation in this electronic state by tuning the epitaxial strain, yielding a manifold of quantum electronic phases, i.e. Mott-Hubbard, charge transfer and Slater insulating states. Furthermore, we report that the electronic correlations are closely related to the structural oxygen octahedral rotations, whose control is able to stabilise the low-spin state of Fe2+ at low pressure previously observed only under the extreme high pressure conditions in the Earth’s lower mantle. Thus, we provide avenues for magnetic switching via THz radiations which have crucial implications for next generation of spintronics technologies.


2020 ◽  
pp. 146808742096933
Author(s):  
Xiangyu Meng ◽  
Sicheng Liu ◽  
Jingchen Cui ◽  
Jiangping Tian ◽  
Wuqiang Long ◽  
...  

A novel method called high-pressure air (HPA) jet controlled compression ignition (JCCI) based on the compound thermodynamic cycle was investigated in this work. The combustion process of premixed mixture can be controlled flexibly by the high-pressure air jet compression, and it characterizes the intensified low-temperature reaction and two-stage high-temperature reaction. The three-dimensional (3D) computational fluid dynamics (CFD) numerical simulation was employed to study the emission formation process and mechanism, and the effects of high-pressure air jet temperature and duration on emissions were also investigated. The simulation results showed that the NOx formation is mainly affected by the first-stage high-temperature reaction due to the higher reaction temperature. Overall, this combustion mode can obtain ultra-low NOx emission. The second-stage high-temperature reaction plays an important role in the CO and THC formation caused by the mixing effect of the high-pressure air and original in-cylinder mixture. The increasing air jet temperature leads to a larger high-temperature in-cylinder region and more fuel in the first-stage reaction, and therefore resulting in higher NOx emission. However, the increasing air jet temperature can significantly reduce the CO and THC emissions. For the air jet duration comparisons, both too short and too long air jet durations could induce higher NOx emission. A higher air jet duration would result in higher CO emission due to the more high-pressure air jet with relatively low temperature.


Sign in / Sign up

Export Citation Format

Share Document