Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms

2018 ◽  
Vol 529 ◽  
pp. 33-40 ◽  
Author(s):  
M. Waqas ◽  
T. Hayat ◽  
S.A. Shehzad ◽  
A. Alsaedi
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 74-88 ◽  
Author(s):  
Tanveer Sajid ◽  
Muhammad Sagheer ◽  
Shafqat Hussain ◽  
Faisal Shahzad

AbstractThe double-diffusive tangent hyperbolic nanofluid containing motile gyrotactic microorganisms and magnetohydrodynamics past a stretching sheet is examined. By adopting the scaling group of transformation, the governing equations of motion are transformed into a system of nonlinear ordinary differential equations. The Keller box scheme, a finite difference method, has been employed for the solution of the nonlinear ordinary differential equations. The behaviour of the working fluid against various parameters of physical nature has been analyzed through graphs and tables. The behaviour of different physical quantities of interest such as heat transfer rate, density of the motile gyrotactic microorganisms and mass transfer rate is also discussed in the form of tables and graphs. It is found that the modified Dufour parameter has an increasing effect on the temperature profile. The solute profile is observed to decay as a result of an augmentation in the nanofluid Lewis number.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Muhammad Awais ◽  
Saeed Ehsan Awan ◽  
Muhammad Asif Zahoor Raja ◽  
Nabeela Parveen ◽  
Wasim Ullah Khan ◽  
...  

Rheology of MHD bioconvective nanofluid containing motile microorganisms is inspected numerically in order to analyze heat and mass transfer characteristics. Bioconvection is implemented by combined effects of magnetic field and buoyancy force. Gyrotactic microorganisms enhance the heat and transfer as well as perk up the nanomaterials’ stability. Variable transport properties along with assisting and opposing flow situations are taken into account. The significant influences of thermophoresis and Brownian motion have also been taken by employing Buongiorno’s model of nanofluid. Lie group analysis approach is utilized in order to compute the absolute invariants for the system of differential equations, which are solved numerically using Adams-Bashforth technique. Validity of results is confirmed by performing error analysis. Graphical and numerical illustrations are prepared in order to get the physical insight of the considered analysis. It is observed that for controlling parameters corresponding to variable transport properties c2, c4, c6, and c8, the velocity, temperature, concentration, and bioconvection density distributions accelerates, respectively. While heat and mass transfer rates increases for convection parameter and bioconvection Rayleigh number, respectively.


Sign in / Sign up

Export Citation Format

Share Document