scholarly journals Cluster–cluster aggregation as an analogue of a turbulent cascade: Kolmogorov phenomenology, scaling laws and the breakdown of self-similarity

2006 ◽  
Vol 222 (1-2) ◽  
pp. 97-115 ◽  
Author(s):  
Colm Connaughton ◽  
R. Rajesh ◽  
Oleg Zaboronski

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 46
Author(s):  
Pedram Nasr ◽  
Hannah Leung ◽  
France-Isabelle Auzanneau ◽  
Michael A. Rogers

Complex morphologies, as is the case in self-assembled fibrillar networks (SAFiNs) of 1,3:2,4-Dibenzylidene sorbitol (DBS), are often characterized by their Fractal dimension and not Euclidean. Self-similarity presents for DBS-polyethylene glycol (PEG) SAFiNs in the Cayley Tree branching pattern, similar box-counting fractal dimensions across length scales, and fractals derived from the Avrami model. Irrespective of the crystallization temperature, fractal values corresponded to limited diffusion aggregation and not ballistic particle–cluster aggregation. Additionally, the fractal dimension of the SAFiN was affected more by changes in solvent viscosity (e.g., PEG200 compared to PEG600) than crystallization temperature. Most surprising was the evidence of Cayley branching not only for the radial fibers within the spherulitic but also on the fiber surfaces.



1996 ◽  
Vol 3 (4) ◽  
pp. 247-261 ◽  
Author(s):  
V. Carbone ◽  
P. Veltri ◽  
R. Bruno

Abstract. In this paper we review some of the work done in investigating the scaling properties of Magnetohydrodynamic turbulence, by using velocity fluctuations measurements performed in the interplanetary space plasma by the Helios spacecraft. The set of scaling exponents ξq for the q-th order velocity structure functions, have been determined by using the Extended Self-Similarity hypothesis. We have found that the q-th order velocity structure function, when plotted vs. the 4-th order structure function, displays a range of self-similarity which extends over all the lengths covered by measurements, thus allowing for a very good determination of ξq. Moreover the results seem to show that the scaling exponents are the same regardless the various observation periods considered. The obtained scaling exponents have been compared with the results of some intermittency models for Kraichnan's turbulence, derived in the framework of infinitely divisible fragmentation processes, showing the good agreement between these models and our observations. Finally, on the basis of the actually available data sets, we show that scaling laws in Solar Wind turbulence seem to be different from turbulent scaling laws in the ordinary fluid flows. This is true for high-order velocity structure functions, while low-order velocity structure functions show the same scaling laws. Since our measurements involve length scales which extend over many order of magnitude where dissipation is practically absent, our results show that Solar Wind turbulence can be regarded as a testing bench for the investigation of general scaling behaviour in turbulent flows. In particular our results strongly support the point of view which attributes a key role to the inertial range dynamics in determining the intermittency characteristics in fluid flows, in contrast with the point of view which attributes intermittency to a finite Reynolds number effect.



2006 ◽  
Vol 61 (12) ◽  
pp. 624-628
Author(s):  
Jian-Ping Luo ◽  
Tatsuo Ushijima ◽  
Osami Kitoh ◽  
Zhi-Ming Lu ◽  
Yu-Lu Liu ◽  
...  

The relation between Eulerian structure function’s scaling exponents and Lagrangian ones in turbulent channel flows is explored both theoretically and numerically. A nonlinear parametric transformation between Eulerian structure function’s scaling exponents and Lagrangian ones is derived, following Landau and Novikov’s frame work. This relation is then compared to some known experimental and numerical results, but mainly to our DNS (direct numerical simulation) results of a fully developed channel flow with Reτ = 100. The scaling exponents are evaluated in terms of the ESS (extended self-similarity) method, since the Reynolds number is too low to make the standard scaling laws applicable. The agreement between theory and simulation is satisfactory



Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 791
Author(s):  
Nicolas Velasquez ◽  
Ricardo Mantilla

Regional Distributed Hydrological models are being adopted around the world for prediction of streamflow fluctuations and floods. However, the details of the hydraulic geometry of the channels in the river network (cross sectional geometry, slope, drag coefficients, etc.) are not always known, which imposes the need for simplifications based on scaling laws and their prescription. We use a distributed hydrological model forced with radar-derived rainfall fields to test the effect of spatial variations in the scaling parameters of Hydraulic Geometric (HG) relationships used to simplify routing equations. For our experimental setup, we create a virtual watershed that obeys local self-similarity laws for HG and attempt to predict the resulting hydrographs using a global self-similar HG parameterization. We find that the errors in the peak flow value and timing are consistent with the errors that are observed when trying to replicate actual observation of streamflow. Our results provide evidence that local self-similarity can be a more appropriate simplification of HG scaling laws than global self-similarity.



1996 ◽  
Vol 28 (10) ◽  
pp. 1745-1762 ◽  
Author(s):  
M Batty ◽  
Y Xie

In this paper, we argue that the geometry of urban residential development is fractal. Both the degree to which space is filled and the rate at which it is filled follow scaling laws which imply invariance of function, and self-similarity of urban form across scale. These characteristics are captured in population density functions based on inverse power laws whose parameters are fractal dimensions. First we outline the relevant elements of the theory in terms of scaling relations and then we introduce two methods for estimating fractal dimension based on varying the size of cities and the scale at which their form is detected. Exact and statistical estimation techniques are applied to each method respectively generating dimensions which measure the extent and the rate of space filling. These methods are then applied to residential development patterns in six industrial cities in the northeastern United States, with an innovative data source from the TIGER/Line files. The results support the theory of the fractal city outlined in books by Batty and Longley and Frankhauser, but with the clear conclusion that different scale and estimation techniques generate different types of fractal dimension.



2000 ◽  
Vol 14 (09) ◽  
pp. 983-991
Author(s):  
GUOCE ZHUANG ◽  
JIAFU WANG ◽  
WEI WANG

The reversible cluster–cluster aggregation processes in compact cluster systems are studied via a scaling argument and Monte Carlo simulations. To describe the detail effects of fragmentations from tree-like fractal to compact clusters a relative breakup probability [Formula: see text] with an exponent β is introduced. The mean-field rate equation and numerical simulation results indicate that the critical exponent y, which is defined as <s (k, ∞)> ~ k-y, has a value of (α + ξ - β + 2)-1. It is shown that the scaling properties of the cluster size distributions are determined by the selections of the exponents α, β and ξ.





Sign in / Sign up

Export Citation Format

Share Document