Cascade of turbulent energy and scalar variance in DC electrokinetic turbulence

2019 ◽  
Vol 399 ◽  
pp. 42-50
Author(s):  
Wei Zhao ◽  
Guiren Wang
2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


1998 ◽  
Vol 53 (10-11) ◽  
pp. 828-832
Author(s):  
Feng Quing-Zeng

Abstract The log-compound-Poisson distribution for the breakdown coefficients of turbulent energy dissipation is proposed, and the scaling exponents for the velocity difference moments in fully developed turbulence are obtained, which agree well with experimental values up to measurable orders. The under-lying physics of this model is directly related to the burst phenomenon in turbulence, and a detailed discussion is given in the last section.


2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Basile Poujol ◽  
Adrian van Kan ◽  
Alexandros Alexakis

2021 ◽  
Vol 60 (3) ◽  
pp. 3345-3352
Author(s):  
S.F. Ahmed ◽  
M.G. Hafez ◽  
Yu-Ming Chu ◽  
M. Mofijur

1967 ◽  
Vol 30 (2) ◽  
pp. 241-258 ◽  
Author(s):  
P. Bradshaw

Townsend's (1961) hypothesis that the turbulent motion in the inner region of a boundary layer consists of (i) an ‘active’ part which produces the shear stress τ and whose statistical properties are universal functions of τ and y, and (ii) an ‘inactive’ and effectively irrotational part determined by the turbulence in the outer layer, is supported in the present paper by measurements of frequency spectra in a strongly retarded boundary layer, in which the ‘inactive’ motion is particularly intense. The only noticeable effect of the inactive motion is an increased dissipation of kinetic energy into heat in the viscous sublayer, supplied by turbulent energy diffusion from the outer layer towards the surface. The required diffusion is of the right order of magnitude to explain the non-universal values of the triple products measured near the surface, which can therefore be reconciled with universality of the ‘active’ motion.Dimensional analysis shows that the contribution of the ‘active’ inner layer motion to the one-dimensional wave-number spectrum of the surface pressure fluctuations varies as τ2w/k1 up to a wave-number inversely proportional to the thickness of the viscous sublayer. This result is strongly supported by the recent measurements of Hodgson (1967), made with a much smaller ratio of microphone diameter to boundary-layer thickness than has been achieved previously. The disagreement of the result with most other measurements is attributed to inadequate transducer resolution in the other experiments.


2014 ◽  
Vol 44 (2) ◽  
pp. 742-763 ◽  
Author(s):  
Yevgenii Rastigejev ◽  
Sergey A. Suslov

Abstract In-depth understanding and accurate modeling of the interaction between ocean spray and a turbulent flow under high wind conditions is essential for improving the intensity forecasts of hurricanes and severe storms. Here, the authors consider the E–ε closure for a turbulent flow model that accounts for the effects of the variation of turbulent energy and turbulent mixing length caused by spray stratification. The obtained analytical and numerical solutions show significant differences between the current E–ε model and the lower-order turbulent kinetic energy (TKE) model considered previously. It is shown that the reduction of turbulent energy and mixing length above the wave crest level, where the spray droplets are generated, that is not accounted for by the TKE model results in a significant suppression of turbulent mixing in this near-wave layer. In turn, suppression of turbulence causes an acceleration of flow and a reduction of the drag coefficient that is qualitatively consistent with field observations if spray is fine (even if its concentration is low) or if droplets are large but their concentration is sufficiently high. In the latter case, spray inertia may become important. This effect is subsequently examined. It is shown that spray inertia leads to the reduction of wind velocity in the close proximity of the wave surface relative to the reference logarithmic profile. However, at higher altitudes the suppression of flow turbulence by the spray still results in the wind acceleration and the reduction of the local drag coefficient.


1998 ◽  
Vol 16 (12) ◽  
pp. 1607-1618 ◽  
Author(s):  
C. M. Hall ◽  
A. H. Manson ◽  
C. E. Meek

Abstract. The spring of 1997 has represented a stable period of operation for the joint University of Tromsø / University of Saskatchewan MF radar, being between refurbishment and upgrades. We examine the horizontal winds from the February to June inclusive and also include estimates of energy dissipation rates derived from signal fading times and presented as upper limits on the turbulent energy dissipation rate, ε. Here we address the periodicity in the dynamics of the upper mesosphere for time scales from hours to one month. Thus, we are able to examine the changes in the spectral signature of the mesospheric dynamics during the transition from winter to summer states.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides).


Sign in / Sign up

Export Citation Format

Share Document