Reliability evaluation based on modal parameters of carbon-nanotube-reinforced-polymer-composite material using multiscale finite element model

2021 ◽  
Vol 125 ◽  
pp. 114318
Author(s):  
Jorge Alberto Palacios ◽  
Rajamohan Ganesan
2012 ◽  
Vol 70 (14) ◽  
pp. 1523 ◽  
Author(s):  
Longbin Qiu ◽  
Xuemei Sun ◽  
Zhibin Yang ◽  
Wenhan Guo ◽  
Huisheng Peng

2015 ◽  
Vol 725-726 ◽  
pp. 943-948 ◽  
Author(s):  
Ivan Maniak ◽  
Boris Melnikov ◽  
Artem S. Semenov ◽  
Sergey Saikin

This work is devoted to the research of mechanical and strength properties of polymer composite material with short carbon fibers produced by injection molding technology. The material is PEEK90HMF20 with 20 % of carbon fibers mass fraction and based on polyether ether ketone (PEEK) polymer matrix. Mechanical and strength properties were researched on samples that had been cut from molded plates. A set of tension tests was performed and stress-strain diagrams of samples with different orientation in relation to the global direction of injection were obtained. Two-step homogenization procedure and pseudo-grains failure model were used to describe composite material behavior. The material model parameters were calibrated with experimental data by means of reverse-engineering procedure. Finite element simulation of tension tests was performed to check the quality of built model from the point of view of its ability to predict failure.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4816
Author(s):  
Maria Grazia Romano ◽  
Michele Guida ◽  
Francesco Marulo ◽  
Michela Giugliano Auricchio ◽  
Salvatore Russo

Structural adhesives play an important role in aerospace manufacturing, since they provide fewer points of stress concentration compared to faster joints. The importance of adhesives in aerospace is increasing significantly because composites are being adopted to reduce weight and manufacturing costs. Furthermore, adhesive joints are also studied to determine the crashworthiness of airframe structure, where the main task for the adhesive is not to dissipate the impact energy, but to keep joint integrity so that the impact energy can be consumed by plastic work. Starting from an extensive campaign of experimental tests, a finite element model and a methodology are implemented to develop an accurate adhesive model in a single lap shear configuration. A single lap joint finite element model is built by MSC Apex, defining two specimens of composite material connected to each other by means of an adhesive; by the Digimat multi-scale modeling solution, the composite material is treated; and finally, by MSC’s Marc, the adhesive material is characterized as a cohesive applying the Cohesive Zone Modeling theory. The objective was to determine an appropriate methodology to predict interlaminar crack growth in composite laminates, defining the mixed mode traction separation law variability in function of the cohesive energy (Gc), the ratio between the shear strength τ and the tensile strength σ (β1), and the critical opening displacement υc.


Sign in / Sign up

Export Citation Format

Share Document