scholarly journals Photon data shed new light upon the GDR spreading width in heavy nuclei

2008 ◽  
Vol 670 (3) ◽  
pp. 200-204 ◽  
Author(s):  
A.R. Junghans ◽  
G. Rusev ◽  
R. Schwengner ◽  
A. Wagner ◽  
E. Grosse
Keyword(s):  
1971 ◽  
Vol 105 (12) ◽  
pp. 780-781 ◽  
Author(s):  
Ya.B. Zel'dovich ◽  
Lev P. Pitaevskii ◽  
Valentin S. Popov ◽  
Aleksei A. Starobinskii

1970 ◽  
Vol 100 (1) ◽  
pp. 45-92 ◽  
Author(s):  
G.N. Flerov ◽  
V.A. Druin ◽  
A.A. Pleve

1984 ◽  
Vol 144 (9) ◽  
pp. 3 ◽  
Author(s):  
Yurii M. Tsipenyuk ◽  
Yu.B. Ostapenko ◽  
G.N. Smirenkin ◽  
A.S. Soldatov

2019 ◽  
Vol 64 (7) ◽  
pp. 583 ◽  
Author(s):  
S. Harabasz

Collisions of heavy nuclei at (ultra-)relativistic energies provide a fascinating opportunity to re-create various forms of matter in the laboratory. For a short extent of time (10-22 s), matter under extreme conditions of temperature and density can exist. In dedicated experiments, one explores the microscopic structure of strongly interacting matter and its phase diagram. In heavy-ion reactions at SIS18 collision energies, matter is substantially compressed (2–3 times ground-state density), while moderate temperatures are reached (T < 70 MeV). The conditions closely resemble those that prevail, e.g., in neutron star mergers. Matter under such conditions is currently being studied at the High Acceptance DiElecton Spectrometer (HADES). Important topics of the research program are the mechanisms of strangeness production, the emissivity of matter, and the role of baryonic resonances herein. In this contribution, we will focus on the important experimental results obtained by HADES in Au+Au collisions at 2.4 GeV center-of-mass energy. We will also present perspectives for future experiments with HADES and CBM at SIS100, where higher beam energies and intensities will allow for the studies of the first-order deconfinement phase transition and its critical endpoint.


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 260-264 ◽  
Author(s):  
Junki Tanaka ◽  
Zaihong Yang ◽  
Stefan Typel ◽  
Satoshi Adachi ◽  
Shiwei Bai ◽  
...  

The surface of neutron-rich heavy nuclei, with a neutron skin created by excess neutrons, provides an important terrestrial model system to study dilute neutron-rich matter. By using quasi-free α cluster–knockout reactions, we obtained direct experimental evidence for the formation of α clusters at the surface of neutron-rich tin isotopes. The observed monotonous decrease of the reaction cross sections with increasing mass number, in excellent agreement with the theoretical prediction, implies a tight interplay between α-cluster formation and the neutron skin. This result, in turn, calls for a revision of the correlation between the neutron-skin thickness and the density dependence of the symmetry energy, which is essential for understanding neutron stars. Our result also provides a natural explanation for the origin of α particles in α decay.


2020 ◽  
Vol 1643 ◽  
pp. 012123
Author(s):  
F. Colomer ◽  
P. Capel ◽  
M. Ferretti ◽  
M. Thiel ◽  
C. Sfienti ◽  
...  
Keyword(s):  

2014 ◽  
Vol 70 ◽  
pp. 175-179 ◽  
Author(s):  
İsmail H. Sarpün ◽  
Abdullah Aydın ◽  
Abdullah Kaplan ◽  
Hülya Koca ◽  
Eyyüp Tel

1960 ◽  
Vol 10 ◽  
pp. 677-679 ◽  

1. p. SELINOV: Anomalous abundances of Te and Xe isotopes in meteorites and in the Earth permit us to draw some conclusions concerning the age of uranium and the processes of nucleogenesis. According to the estimate by Hoyle the amount of 254Cf disintegrated during a super-nova outburst is of the order of io29 g or io~4 of the stellar mass. According to the fission-yield curve the isotopes of Te comprise about 1 % of the mass of fission products. The abundances of Te 128-131 are anomalously high, due to the fission of heavy nuclei. The element abundances do not permit us to draw any conclusions about the r-process. The isotopes of Te and Xe with even mass numbers give evidence in favour of the r-process (anomalously high abundances). But the amount of Te in meteorites and in Earth is about 1000 times less than it should be if formed during the outburst. The Sikhote- Alin meteorite shows the same anomaly. We may conclude that the heavy elements of the solar system have been formed not in a single super-nova outburst, but as a result of mixing from the totality of outbursts. According to Hoyle, this gives a definite estimate for the age of uranium.


1935 ◽  
Vol 48 (4) ◽  
pp. 367-372 ◽  
Author(s):  
J. H. van Vleck

Sign in / Sign up

Export Citation Format

Share Document