scholarly journals Radiative interactions between new non-Abelian gauge sector and the standard model

2021 ◽  
Vol 821 ◽  
pp. 136630
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Upalaparna Banerjee ◽  
Joydeep Chakrabortty ◽  
Suraj Prakash ◽  
Shakeel Ur Rahaman ◽  
Michael Spannowsky

Abstract It is not only conceivable but likely that the spectrum of physics beyond the Standard Model (SM) is non-degenerate. The lightest non-SM particle may reside close enough to the electroweak scale that it can be kinematically probed at high-energy experiments and on account of this, it must be included as an infrared (IR) degree of freedom (DOF) along with the SM ones. The rest of the non-SM particles are heavy enough to be directly experimentally inaccessible and can be integrated out. Now, to capture the effects of the complete theory, one must take into account the higher dimensional operators constituted of the SM DOFs and the minimal extension. This construction, BSMEFT, is in the same spirit as SMEFT but now with extra IR DOFs. Constructing a BSMEFT is in general the first step after establishing experimental evidence for a new particle. We have investigated three different scenarios where the SM is extended by additional (i) uncolored, (ii) colored particles, and (iii) abelian gauge symmetries. For each such scenario, we have included the most-anticipated and phenomenologically motivated models to demonstrate the concept of BSMEFT. In this paper, we have provided the full EFT Lagrangian for each such model up to mass dimension 6. We have also identified the CP, baryon (B), and lepton (L) number violating effective operators.


1995 ◽  
Vol 10 (04) ◽  
pp. 443-464 ◽  
Author(s):  
BERND A. KNIEHL

We review recent theoretical progress in the computation of radiative corrections beyond one loop within the standard model of electroweak interactions, in both the gauge and Higgs sectors. In the gauge sector, we discuss universal corrections of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], and those due to virtual [Formula: see text]-threshold effects, as well as specific corrections to [Formula: see text] of [Formula: see text], [Formula: see text] and [Formula: see text] including finite-mb effects. We also present an update of the hadronic contributions to Δα. Theoretical uncertainties, other than those due to the lack of knowledge of MH and mt, are estimated. In the Higgs sector, we report on the [Formula: see text] corrections to [Formula: see text] including those which are specific for the [Formula: see text] mode, the [Formula: see text] corrections to [Formula: see text] including the finite-mq terms, and the [Formula: see text] corrections to Γ(H → gg).


2007 ◽  
Vol 22 (31) ◽  
pp. 5808-5818 ◽  
Author(s):  
Pascal Anastasopoulos

D -brane realizations of the Standard Model predict extra abelian gauge fields which are superficially anomalous. The anomalies are cancelled via appropriate couplings to axions and Chern-Simons-like couplings. The presence of such couplings has dramatic experimental consequences: a) they provide masses to the anomalous abelian gauge fields (which masses can be of order of a few TeV), b) they provide new contributions to couplings like Z '-¿ gamma Z , that may be considerable at LHC. This proceeding is mainely based on hep-th/0605225.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650111 ◽  
Author(s):  
Pavel Yu. Moshin ◽  
Alexander A. Reshetnyak

We continue our research[Formula: see text] and extend the class of finite BRST–anti-BRST transformations with odd-valued parameters [Formula: see text], [Formula: see text], introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST–anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST–anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST–anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST–anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters [Formula: see text] is obtained, providing the equivalence of path integrals in any 3-parameter [Formula: see text]-like gauges. The Gribov–Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in [Formula: see text]-like gauges, in a gauge-independent way using field-dependent BRST–anti-BRST transformations, and in [Formula: see text]-like gauges using transverse-like non-Abelian gauge fields.


2016 ◽  
Vol 31 (19) ◽  
pp. 1650117 ◽  
Author(s):  
Gauhar Abbas

A right–right–left extension of the Standard Model is proposed. In this model, SM gauge group [Formula: see text] is extended to [Formula: see text]. The gauge symmetries [Formula: see text], [Formula: see text] are the mirror counterparts of the [Formula: see text] and [Formula: see text], respectively. Parity is spontaneously broken when the scalar Higgs fields acquire vacuum expectation values (VEVs) in a certain pattern. Parity is restored at the scale of [Formula: see text]. The gauge sector has a unique pattern. The scalar sector of the model is optimum, elegant and unique.


2012 ◽  
Vol 2012 ◽  
pp. 1-2
Author(s):  
Hoang Ngoc Long ◽  
Vicente Pleitez ◽  
Marc Sher ◽  
Masaki Yasue

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Raghuveer Garani ◽  
Michele Redi ◽  
Andrea Tesi

Abstract We investigate the nightmare scenario of dark sectors that are made of non-abelian gauge theories with fermions, gravitationally coupled to the Standard Model (SM). While testing these scenarios is experimentally challenging, they are strongly motivated by the accidental stability of dark baryons and pions, that explain the cosmological stability of dark matter (DM). We study the production of these sectors which are minimally populated through gravitational freeze-in, leading to a dark sector temperature much lower than the SM, or through inflaton decay, or renormalizable interactions producing warmer DM. Despite having only gravitational couplings with the SM these scenarios turn out to be rather predictive depending roughly on three parameters: the dark sector temperature, the confinement scale and the dark pion mass. In particular, when the initial temperature is comparable to the SM one these scenarios are very constrained by structure formation, ∆Neff and limits on DM self-interactions. Dark sectors with same temperature or warmer than SM are typically excluded.


2020 ◽  
Vol 30 (3) ◽  
Author(s):  
Hieu Minh Tran ◽  
Sang Quang Dinh ◽  
Trang Quynh Trieu

We investigate an extension of the standard model with vector-like fermions and an extra Abelian gauge symmetry. The particle mass spectrum is calculated explicitly. The Lagrangian terms for all the gauge interactions of leptons and quarks in the model are derived. We observe that while there is no new mixing in the lepton sector, the quark mixing plays an important role in the magnitudes of gauge interactions for quarks, particularly the interactions with massive \(W\), \(Z\) and \(Z'\) bosons. We calculate the contributions of the new vector-like leptons and quarks to the Peskin-Takeuchi parameters as well as the \(\rho\) parameter of the electroweak precision tests, and show that the model is realistic.


1994 ◽  
Vol 09 (33) ◽  
pp. 3053-3062 ◽  
Author(s):  
B. MACHET

We show how an Abelian spontaneously broken gauge theory of fermions endowed with a composite scalar multiplet becomes naturally anomaly-free, and yet correctly describes the couplings of a neutral isoscalar pion to two gauge fields and to leptons: the first coupling is the same as that computed from the chiral anomaly, and the second is identical with that obtained from the 'Partially Conserved Axial Current' hypothesis. The general (non-Abelian) case of the standard model is only mentioned and will be the subject of another work.


Sign in / Sign up

Export Citation Format

Share Document