scholarly journals Pion charge radius from pion+electron elastic scattering data

2021 ◽  
Vol 822 ◽  
pp. 136631
Author(s):  
Zhu-Fang Cui ◽  
Daniele Binosi ◽  
Craig D. Roberts ◽  
Sebastian M. Schmidt
2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 491
Author(s):  
S. Zahra ◽  
B. Shafaq

Using  proton–proton elastic scattering data  at  TeV and squared four-momentum transfer 0.36 < -t <  0.76 (GeV/c)2 for 13 σBeam distance  and  0.07 < -t <  0.46 (GeV/c)2 for 4.3 σBeam distance, form factor of proton is predicted. Simplest version of Chou–Yang model is employed to extract the form factor by fitting experimental data of differential cross section from TOTEM experiment (for 13σBeamand 4.3 σBeam distance) to a single Gaussian. Root mean square (rms) charge radius of proton is calculated using this form factor.  It is found to be equal to 0.91 fm and 0.90 fm respectively. Which is in good agreement with experimental data and theoretically predicted values.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
Author(s):  
Sarwat Zahra ◽  
Bushra Shafaq

Using  proton–proton elastic scattering data  at  TeV and squared four-momentum transfer 0.36 < -t <  0.76 (GeV/c)2 for 13 σBeam distance  and  0.07 < -t <  0.46 (GeV/c)2 for 4.3 σBeam distance, form factor of proton is predicted. Simplest version of Chou–Yang model is employed to extract the form factor by fitting experimental data of differential cross section from TOTEM experiment (for 13σBeamand 4.3 σBeam distance) to a single Gaussian. Root mean square (rms) charge radius of proton is calculated using this form factor.  It is found to be equal to 0.91 fm and 0.90 fm respectively. Which is in good agreement with experimental data and theoretically predicted values.


1992 ◽  
Vol 07 (26) ◽  
pp. 2415-2421 ◽  
Author(s):  
A. P. CONTOGOURIS ◽  
F. LEBESSIS

First a unitarization procedure for an amplitude with the asymptotic behavior of the Lipatov Pomeron is presented; it amounts to its iteration along the s-channel. Next, based on this procedure, a specific model is considered and applied to the description of elastic scattering data at very high energies; it is shown that it leads to a fair description of them.


2014 ◽  
Vol 23 (12) ◽  
pp. 1450090 ◽  
Author(s):  
D. Robson

The relationship between the static electric form factor for the proton in the rest frame and the Sachs electric form factor in the Breit momentum frame is used to provide a value for the difference in the mean squared charge radius of the proton evaluated in the two frames. Associating the muonic–hydrogen data analysis for the proton charge radius of 0.84087 fm with the rest frame and associating the electron scattering data with the Breit frame yields a prediction of 0.87944 fm for the proton radius in the relativistic frame. The most recent value deduced via electron scattering from the proton is 0.877(6) fm so that the frame dependence used here yields a plausible solution to the proton radius puzzle.


2020 ◽  
Vol 999 ◽  
pp. 121767 ◽  
Author(s):  
Timothy B. Hayward ◽  
Keith A. Griffioen

1985 ◽  
Vol 446 (3-4) ◽  
pp. 637-656 ◽  
Author(s):  
H. Heiselberg ◽  
A.S. Jensen ◽  
A. Miranda ◽  
G.C. Oades ◽  
O. Dumbrajs

2002 ◽  
Vol 11 (06) ◽  
pp. 519-529 ◽  
Author(s):  
I. AHMAD ◽  
M. A. ABDULMOMEN ◽  
M. A. ALVI

A phenomenological method of analysis for heavy-ion elastic scattering data at intermediate energies is proposed within the framework of the optical limit approximation of the Glauber multiple scattering theory. The essential point of our method is to evaluate the NN scattering amplitude in terms of a phenomenological effective NN potential the parameters of which are varied to fit the experimental data. It is applied to analyze 12C–12C elastic scattering data in the energy range of 25–200 MeV/nucleon with a good degree of success.


1975 ◽  
Vol 53 (17) ◽  
pp. 1672-1686 ◽  
Author(s):  
H. C. Chow ◽  
G. M. Griffiths ◽  
T. H. Hall

The cross section for the direct radiative capture of protons by 16O has been measured relative to the proton elastic scattering cross section for energies from 800 to 2400 keV (CM). The elastic scattering cross section was normalized to the Rutherford scattering cross section at 385.5 keV. The capture cross section for the reaction 16O(p,γ)17F, which plays a role in hydrogen burning stars, has been extrapolated to stellar energies using a theoretical model which gives a good fit to the measured cross sections. The model involves calculation of electromagnetic matrix elements between initial and final state wave functions evaluated for Saxon–Woods potentials with parameters adjusted to fit both elastic scattering data and binding energies for the ground and first excited states of 17F. Cross sections for capture to the 5/2+ ground and 1/2+ first excited states of 17F in terms of astrophysical S factors valid for energies ≤ 100 keV have been found to be: S5/2+ = (0.317 + 0.0002E) keV b (± 8%); S1/2+ = (8.552 − 0.353E + 0.00013E2) keV b (± 5%).


Sign in / Sign up

Export Citation Format

Share Document