Comparative expression profiles of maize genes from a water stress-specific cDNA macroarray in response to high-salinity, cold or abscisic acid

Plant Science ◽  
2006 ◽  
Vol 170 (6) ◽  
pp. 1125-1132 ◽  
Author(s):  
Jun Zheng ◽  
Jinfeng Zhao ◽  
Jinpeng Zhang ◽  
Junjie Fu ◽  
Mingyue Gou ◽  
...  
2003 ◽  
Vol 133 (4) ◽  
pp. 1755-1767 ◽  
Author(s):  
M. Ashiq Rabbani ◽  
Kyonoshin Maruyama ◽  
Hiroshi Abe ◽  
M. Ayub Khan ◽  
Koji Katsura ◽  
...  

Crop Science ◽  
2011 ◽  
Vol 51 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Kristen A. Leach ◽  
Lindsey G. Hejlek ◽  
Leonard B. Hearne ◽  
Henry T. Nguyen ◽  
Robert E. Sharp ◽  
...  

1975 ◽  
Vol 53 (24) ◽  
pp. 3041-3050 ◽  
Author(s):  
C. H. A. Little

In experiments with attached and detached shoots of balsam fir, Abies balsamea L., synthetic (±)abscisic acid (ABA) (1) reduced photosynthesis and transpiration by inducing stomatal closure, (2) inhibited indoleacetic acid (IAA) - induced cambial activity in photosynthesizing and non-photosynthesizing shoots, and (3) inhibited the basipetal movement of [14C]IAA. Neither gibberellic acid nor kinetin counteracted the inhibitory effect of (±)ABA on IAA-induced cambial activity. In addition it was demonstrated that increasing the internal water stress increased the level of endogenous ABA in the phloem–cambial region of bark peelings and decreased the basipetal movement of [14C]IAA through branch sections. On the basis of these findings it is proposed that internal water stress inhibits cambial activity, partly through increasing the level of ABA; the ABA acts to decrease the provision of carbohydrates and auxin that are required for cambial growth.


Sign in / Sign up

Export Citation Format

Share Document