Identification of genes preferentially expressed in cotton fibers: A possible role of calcium signaling in cotton fiber elongation

Plant Science ◽  
2007 ◽  
Vol 173 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Peng Gao ◽  
Pi-Ming Zhao ◽  
Juan Wang ◽  
Hai-Yun Wang ◽  
Xiao-Min Wu ◽  
...  
2004 ◽  
Vol 136 (4) ◽  
pp. 4104-4113 ◽  
Author(s):  
Yong-Ling Ruan ◽  
Shou-Min Xu ◽  
Rosemary White ◽  
Robert T. Furbank

2021 ◽  
Author(s):  
Jia-Shuo Yang ◽  
Jayakumar Bose ◽  
Sergey Shabala ◽  
Yong-Ling Ruan

AbstractCotton fibers are single-celled trichomes initiated from ovule epidermis prior to anthesis. Thereafter, the fibers undergo rapid elongation for 20 d before switching to intensive cell wall cellulose synthesis. The final length attained determines fiber yield and quality. As such, cotton fiber represents an excellent single cell model to study regulation of cell growth and differentiation, with significant agronomical implications. One major unresolved question is whether fiber elongation follows a diffusive or a tip growth pattern. We addressed this issue by using cell biology and electrophysiological approaches. Confocal imaging of Ca2+ binding dye, fluo-3 acetoxymethyl (Fluo-3), and in situ microelectrode ion flux measurement revealed that cytosolic Ca2+ was evenly distributed along the elongating fiber cells with Ca2+ and H+ fluxes oscillating from apical to basal regions of the elongating fibers. These findings demonstrate that, contrary to growing pollen tubes or root hairs, cotton fiber growth follows a diffusive, but not the tip growth, pattern. Further analyses showed that the elongating fibers exhibited substantial net H+ efflux, indicating a strong activity of the plasma membrane H+-ATPase required for energy dependent solute uptake. Interestingly, the growing cotton fibers were responding to H2O2 treatment, know to promote fiber elongation, by a massive increase in the net Ca2+ and H+ efflux in both tip and basal zones, while non-growing cells lacked this ability. These observations suggest that desensitization of the cell and a loss of its ability to respond to H2O2 may be causally related to the termination of the cotton fiber elongation.One sentence summaryConfocal imaging of Ca2+ patterning and in situ microelectrode ion flux measurements demonstrate that, contrary to growing pollen tubes or root hairs, cotton fiber growth follows a diffusive, but not the tip growth, pattern.


2008 ◽  
Vol 237 (6) ◽  
pp. 745-754 ◽  
Author(s):  
I.V. Dokukina ◽  
M.E. Gracheva ◽  
E.A. Grachev ◽  
J.D. Gunton

2003 ◽  
Vol 278 (47) ◽  
pp. 46270-46277 ◽  
Author(s):  
Mu-Lan He ◽  
Arturo E. Gonzalez-Iglesias ◽  
Stanko S. Stojilkovic

iScience ◽  
2021 ◽  
Vol 24 (7) ◽  
pp. 102737
Author(s):  
Liping Zhu ◽  
Lingling Dou ◽  
Haihong Shang ◽  
Hongbin Li ◽  
Jianing Yu ◽  
...  

iScience ◽  
2021 ◽  
pp. 102199
Author(s):  
Liping Zhu ◽  
Lingling Dou ◽  
Haihong Shang ◽  
Hongbin Li ◽  
Jianing Yu ◽  
...  

2021 ◽  
Vol 8 (2) ◽  
pp. 1-8
Author(s):  
Chanel Angelique Fortier ◽  
Christopher Delhom ◽  
Michael K. Dowd

This work reports on two debated points related to the metal content of cotton fiber and its influence on processing. The first issue is if the metal levels of raw fibers are naturally deposited during fiber development or if the levels are influenced by weathering and harvesting conditions present after boll opening. This was tested by harvesting bolls just as they were opening and after the opened bolls were allowed to field age. The second issue relates to the importance of metal levels on fiber dyeability. Results indicate that the metal levels of newly-opened cotton were not appreciably different from those of aged cotton bolls and that the fiber metal levels after scouring and bleaching had little correlation with dye uptake. Additionally, some metal levels exceeded those previously reported and the environment appeared to have a stronger influence on fiber Ca and Mg levels than did cultivar differences.


Sign in / Sign up

Export Citation Format

Share Document