scholarly journals Role of Nucleotide P2 Receptors in Calcium Signaling and Prolactin Release in Pituitary Lactotrophs

2003 ◽  
Vol 278 (47) ◽  
pp. 46270-46277 ◽  
Author(s):  
Mu-Lan He ◽  
Arturo E. Gonzalez-Iglesias ◽  
Stanko S. Stojilkovic
2008 ◽  
Vol 237 (6) ◽  
pp. 745-754 ◽  
Author(s):  
I.V. Dokukina ◽  
M.E. Gracheva ◽  
E.A. Grachev ◽  
J.D. Gunton

2018 ◽  
Vol 43 (3) ◽  
pp. 312-315
Author(s):  
Naoto Fujii ◽  
Robert D. Meade ◽  
Jeffrey C. Louie ◽  
Pegah Akbari ◽  
Pierre Boulay ◽  
...  

We assessed the role of purinergic P2 receptors in the regulation of cutaneous vasodilation in young adults at rest and during intermittent moderate-intensity exercise in the heat (35 °C). P2 receptor blockade augmented resting cutaneous vasodilation but had no influence during and following exercise. This increase was partly diminished by nitric oxide synthase inhibition. These results suggest a functional role of P2 receptors in the regulation of cutaneous vascular tone during ambient heat exposure at rest.


2018 ◽  
Vol 19 (11) ◽  
pp. 3390 ◽  
Author(s):  
Sudip Paudel ◽  
Regan Sindelar ◽  
Margaret Saha

Accumulating evidence over the past three decades suggests that altered calcium signaling during development may be a major driving force for adult pathophysiological events. Well over a hundred human genes encode proteins that are specifically dedicated to calcium homeostasis and calcium signaling, and the majority of these are expressed during embryonic development. Recent advances in molecular techniques have identified impaired calcium signaling during development due to either mutations or dysregulation of these proteins. This impaired signaling has been implicated in various human diseases ranging from cardiac malformations to epilepsy. Although the molecular basis of these and other diseases have been well studied in adult systems, the potential developmental origins of such diseases are less well characterized. In this review, we will discuss the recent evidence that examines different patterns of calcium activity during early development, as well as potential medical conditions associated with its dysregulation. Studies performed using various model organisms, including zebrafish, Xenopus, and mouse, have underscored the critical role of calcium activity in infertility, abortive pregnancy, developmental defects, and a range of diseases which manifest later in life. Understanding the underlying mechanisms by which calcium regulates these diverse developmental processes remains a challenge; however, this knowledge will potentially enable calcium signaling to be used as a therapeutic target in regenerative and personalized medicine.


2021 ◽  
Author(s):  
Alejandra J.H. Cabrera ◽  
Barry M Gumbiner ◽  
Young V Kwon

Given the role of E-cadherin (E-cad) in holding epithelial cells together, the inverse relationship between E-cad levels and cell invasion has been perceived as a principle underlying the invasiveness of tumor cells. In contrast, our study employing the Drosophila model of cell dissemination demonstrates that E-cad is necessary for the invasiveness of RasV12-transformed cells in vivo. Drosophila E-cad/β-catenin disassembles at adherens junctions and assembles at invasive protrusions—the actin- and cortactin-rich invadopodia-like protrusions associated with breach of the extracellular matrix (ECM)—during cell dissemination. Loss of E-cad attenuates dissemination of RasV12-transformed cells by impairing their ability to compromise the ECM. Strikingly, the remodeling of E-cad/β-catenin subcellular distribution is controlled by two discrete intracellular calcium signaling pathways: Ca2+ release from endoplasmic reticulum via the inositol triphosphate receptor (IP3R) disassembles E-cad at adherens junctions while Ca2+ entry via the mechanosensitive channel Piezo assembles E-cad at invasive protrusions. Thus, our study provides molecular insights into the unconventional role of E-cad in cell invasion during cell dissemination in vivo and describes the discrete roles of intracellular calcium signaling in the remodeling of E-cad/β-catenin subcellular localization.


2019 ◽  
Vol 476 (13) ◽  
pp. 1857-1873 ◽  
Author(s):  
Shambhu Yadav ◽  
Bindia Chawla ◽  
Mohammad Anwar Khursheed ◽  
Rajesh Ramachandran ◽  
Anand Kumar Bachhawat

Abstract Calcium signaling is essential for embryonic development but the signals upstream of calcium are only partially understood. Here, we investigate the role of the intracellular glutathione redox potential in calcium signaling using the Chac1 protein of zebrafish. A member of the γ-glutamylcyclotransferase family of enzymes, the zebrafish Chac1 is a glutathione-degrading enzyme that acts only on reduced glutathione. The zebrafish chac1 expression was seen early in development, and in the latter stages, in the developing muscles, brain and heart. The chac1 knockdown was embryonic lethal, and the developmental defects were seen primarily in the myotome, brain and heart where chac1 was maximally expressed. The phenotypes could be rescued by the WT Chac1 but not by the catalytically inactive Chac1 that was incapable of degrading glutathione. The ability of chac1 to alter the intracellular glutathione redox potential in the live animals was examined using Grx1-roGFP2. The chac1 morphants lacked the increased degree of cellular oxidation seen in the WT zebrafish. As calcium is also known to be critical for the developing myotomes, brain and heart, we further investigated if the chac1 knockdown phenotypes were a consequence of the lack of calcium signals. We observed using GCaMP6s, that calcium transients normally seen in the developing embryos were strongly attenuated in these knockdowns. The study thus identifies Chac1 and the consequent change in intracellular glutathione redox potential as important upstream activators of calcium signaling during development.


Sign in / Sign up

Export Citation Format

Share Document