Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize

2019 ◽  
Vol 139 ◽  
pp. 171-178 ◽  
Author(s):  
Kamel Hessini ◽  
Khawla Issaoui ◽  
Selma Ferchichi ◽  
Tarek Saif ◽  
Chedly Abdelly ◽  
...  
2007 ◽  
Vol 34 (3) ◽  
pp. 228 ◽  
Author(s):  
Christoph Studer ◽  
Yuncai Hu ◽  
Urs Schmidhalter

Many physiological mechanisms associated with nutrient supply have been implicated as improving plant growth under drought conditions. However, benefits to plant growth under drought might derive from an increased recovery of soil water through osmotic adjustment in the shoots and especially in the roots. Thus, experiments were carried out to investigate the effects of the nutrients N, P and K applied singly or in combination, on the osmotic adjustment and turgor maintenance in the roots and leaves of maize seedlings. The seedlings were harvested between 18 and 37 days after sowing according to the soil matric threshold potentials. Soil matric potentials and shoot and root biomass were determined at harvest. Turgor pressure and osmotic adjustment of the leaves and roots were estimated by measurements of their water and osmotic potentials. Results showed that plants with either of the combined fertilisation treatments NPK or NP grew faster at a given level of drought stress than those with no fertilisation, N, P or K applied individually or the combined nutrient treatments PK and NK. Among the fertiliser applications with either a single or two combined nutrients, plants treated with any of N, P or NP grew faster than those with either K or NK. The association between the interactive effects of nutrients and drought stress on the osmotic adjustment and turgor maintenance in roots may partially explain the role of nutrients in drought tolerance of maize seedlings. In particular, the roots exhibited a higher osmotic adjustment than the leaves for all nutrient treatments, suggesting that shoot growth shows a higher sensitivity to water deficit compared to root growth. We conclude that the maintained turgor of roots under drought stress obtained with an optimal nutrient supply results in better root growth and apparently promotes overall plant growth, suggesting that osmotic adjustment is an adaptation not only for surviving stress, but also for growth under such conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 628
Author(s):  
Hassan E. Abd Elsalam ◽  
Mohamed E. El- Sharnouby ◽  
Abdallah E. Mohamed ◽  
Bassem M. Raafat ◽  
Eman H. El-Gamal

Sewage sludge is an effective fertilizer in many soil types. When applied as an amendment, sludge introduces, in addition to organic matter, plant nutrients into the soil. When applied for cropland as a fertilizer, the mass loading of sewage sludge is customarily determined by inputs of N and/or P required to support optimal plant growth and a successful harvest. This study aims to examine the changes in organic matter contents and nitrogen forms in sludge-amended soils, as well as the growth of corn and faba bean plants. The main results indicated that there were higher responses to the corn and faba bean yields when sludge was added. Levels of organic carbon in soil were higher after maize harvest and decreased significantly after harvesting of beans, and were higher in sludge amended soils than unmodified soils, indicating the residual effect of sludge in soil. NO3−-N concentrations were generally higher in the soil after maize harvest than during the plant growth period, but this trend was not apparent in bean soil. The amounts of NH4+-N were close in the soil during the growth period or after the maize harvest, while they were higher in the soil after the bean harvest than they were during the growth period. Total nitrogen amounts were statistically higher in the soil during the growth period than those collected after the corn harvest, while they were approximately close in the bean soil. The total nitrogen amount in corn and bean leaves increased significantly in plants grown on modified sludge soil. There were no significant differences in the total nitrogen levels of the maize and beans planted on the treated soil.


2019 ◽  
Vol 225 (3) ◽  
pp. 1091-1096 ◽  
Author(s):  
Rana Munns ◽  
John B. Passioura ◽  
Timothy D. Colmer ◽  
Caitlin S. Byrt

Geoderma ◽  
2019 ◽  
Vol 346 ◽  
pp. 11-17 ◽  
Author(s):  
Jin-Feng Liang ◽  
Jing An ◽  
Jun-Qin Gao ◽  
Xiao-Ya Zhang ◽  
Ming-Hua Song ◽  
...  

2011 ◽  
Vol 361-363 ◽  
pp. 90-93
Author(s):  
Zhao Xiang Han ◽  
Gui Quan Han ◽  
Zhang Meng ◽  
Chun Xia Lv

This study was aimed at obtaining detailed information about the interaction of NaCl salinity and elevated atmospheric CO2concentration in the halophyte S.salsa, which was irrigated with five different salinity levels under ambient and elevated (530 ppm) CO2. The results show that total soluble sugar concentration was significantly increased by salt-treatments in both leaves and roots, and that the most progressive sugar increments were observed in leaves and roots of S. salsa under the elevated CO2. The Na+ concentration in the leaves and roots increased with the increased NaCl concentration, the K+ accumulation gradually decreaed by increasing salinity levels in leaves and roots. Proline increased in response to salt stress along with incremental NaCl concentration. The GB concentrations of leaves were significantly raised as NaCl levels increased. Electrolyte leakage increased in the leaves of S. salsa grown under NaCl stress. ψs of leaves and roots decreased as the NaCl concentration increase, and that elevated CO2both had markedly greater effects on ψs of leaves and roots. The osmotic adjustment values ascended with elevated CO2concentration in both leaves and roots.


HortScience ◽  
1990 ◽  
Vol 25 (5) ◽  
pp. 554-555
Author(s):  
Brent K. Harbaugh

Caladium × hortulanum Birdsey `Candidum' tubers were forced in pots until at least one-half the visible sprouts were 2 cm above the soil surface. These prefinished plants were subjected to simulated transit durations of 2, 4, or 6 days in the dark at 12.5, 15.5, 18.5, 21.0 or 24C. Plants were then grown for 4 weeks in a greenhouse and were either fertilized weekly with 100 ml of a solution containing 500 N-218P-415K (mg·liter-1) or were not fertilized. Interactive effects between transit duration and temperature were significant for all measured growth responses. Transit temperature maintained for 2 days had little effect on subsequent growth and only moderate effects after 4 days. With transit duration of 6 days, an increase in temperature resulted in increased plant height, fresh weight, number of leaves, white coloration of leaves, and percent of plants judged marketable (finished) in 4 weeks. Holding at ≈ 18.5C was most favorable for transit durations of 4 or 6 days. Use of fertilizer during finishing improved plant growth regardless of transit conditions, but did not totally negate deleterious effects from transit conditions.


2021 ◽  
Vol 31 (2) ◽  
pp. 217-224
Author(s):  
Jiwoo Park ◽  
James E. Faust

The amount of fertilizer applied during the commercial production of bedding plants has decreased in recent years because of increasing concerns about environmental impacts and the need to minimize production costs. However, reduced fertilization affects plant growth and flowering during production and in the postproduction environment. Plants grown with lower nutrient levels may perform satisfactorily during greenhouse production, but they may possess insufficient nutrients to sustain further growth in the postproduction environment, where fertilizer application is frequently lacking. This study examined conventional and alternative fertilizer delivery strategies that produce high-quality petunia (Petunia ×hybrida) during greenhouse production and continue to support plant growth and flowering in the postproduction environment. The fertilizer treatments during production consisted of four constant liquid fertilization (CLF) treatments of 0, 50, 100, or 200 ppm nitrogen (N) and three controlled-release fertilization (CRF) treatments (0, 4, or 8 lb/yard3). Three pulse fertilization (PF) treatments (0, 300, or 600 ppm N) were applied immediately before moving the plants to the postproduction environment. During production, petunia growth and development increased as CLF increased from 0 to 200 ppm N, but the addition of CRF resulted in the increase occurring at a declining rate. During postproduction, the interactive effects of CLF and CRF continued in a similar pattern as that seen in the production environment. The additional PF treatments resulted in further increases in plant growth. Across all CLF and CRF treatments, the leaf area increased from 466 to 540 cm2 as PF increased from 0 to 300 ppm N, and the leaf area increased further to 631 cm2 as PF increased from 300 to 600 ppm N. Based on our findings, two alternative strategies are possible. First, 0 to 50 ppm N CLF can be combined with 4 lb/yard3 CRF. The second strategy maintains the standard commercial practice of applying 100 ppm N CLF treatment and then applying a 300- to 600-ppm N PF treatment. These results suggest that a relatively low CLF rate can be used to achieve the desired production characteristics while reducing the cost of plant growth regulation, and that additional plant nutrition can be provided with CRF and/or PF to enhance the postproduction performance.


Sign in / Sign up

Export Citation Format

Share Document