Specific galactolipids species correlate with rice genotypic variability for phosphate utilization efficiency

Author(s):  
Lokesh Verma ◽  
Pawandeep Singh Kohli ◽  
Kanika Maurya ◽  
Abhijith K B ◽  
Jitendra K. Thakur ◽  
...  
2016 ◽  
Vol E99.C (8) ◽  
pp. 936-946
Author(s):  
Ryotaro KOBAYASHI ◽  
Ikumi KANEKO ◽  
Hajime SHIMADA

2010 ◽  
Vol 36 (2) ◽  
pp. 224-228
Author(s):  
Jian-wei PENG ◽  
Zhe-li DING ◽  
Qiang LIU ◽  
Xiang-min RONG ◽  
Chang TIAN ◽  
...  

2020 ◽  
pp. 68-71
Author(s):  
V. S. Krutko ◽  
L. H. Nikolaieva ◽  
T. V. Maistat ◽  
O. A. Oparin ◽  
Anton Viktorovych Rohozhyn

Tuberculosis is infectious and socially dependent disease, being now one of the most pressing issues in practical health care. As well the usual types of tuberculosis infection, chemoresistant tuberculosis is spreading rapidly in the world. The WHO estimates that about 500,000 people on the planet are infected with M. tuberculosis, which is resistant to standard anti−tuberculosis drugs. The probability of successful treatment decreases with emergence of new genotypes of M. tuberculosis with total resistance. In the modern epidemiology of tuberculosis, it is important to identify genotypes on certain signs, allowing to address issues such as their origin, identification of the infection source, possible routes and factors of transmission, as well as to reveal cases and spread of resistance to anti−tuberculosis drugs. To evaluate the therapy efficiency of multidrug−resistant tuberculosis patients with revealed genotypic variability during treatment, 10 patients with chemoresistant pulmonary tuberculosis having M. tuberculosis genotypic variability were treated. In these patients, the clinical, laboratory and radiological dynamics of disease in intensive phase of treatment were studied. Analysis of treatment results for patients with chemoresistant tuberculosis with genotypic variability of M. tuberculosis was evaluated by the intoxication syndrome dynamics of, the timing of closure of the decay cavities and cessation of bacterial excretion. The study found that the genotypic variability of M. tuberculosis is characterized by the change of less virulent genotypes of M. tuberculosis to more virulent. Signs of intoxication have been shown to change from less virulent M. tuberculosis genotypes to M. tuberculosis Beijing genotypes. Genotypic variability of mycobacteria in hospital suggests that hospitalization in tuberculosis facilities is a risk of exogenous tuberculosis superinfection. Studying the influence of genotypic variability of M. tuberculosis on the course of multidrug−resistant tuberculosis requires more extensive research, being a very relevant and promising area in phthisiology. Key words: Mycobacterium tuberculosis, genotypic variability, VNTR−genotyping, treatment.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 101-108 ◽  
Author(s):  
R. C. Clifft ◽  
M. T. Garrett

Now that oxygen production facilities can be controlled to match the requirements of the dissolution system, improved oxygen dissolution control can result in significant cost savings for oxygen activated sludge plants. This paper examines the potential cost savings of the vacuum exhaust control (VEC) strategy for the City of Houston, Texas 69th Street Treatment Complex. The VEC strategy involves operating a closed-tank reactor slightly below atmospheric pressure and using an exhaust apparatus to remove gas from the last stage of the reactor. Computer simulations for one carbonaceous reactor at the 69th Street Complex are presented for the VEC and conventional control strategies. At 80% of design loading the VEC strategy was found to provide an oxygen utilization efficiency of 94.9% as compared to 77.0% for the conventional control method. At design capacity the oxygen utilization efficiency for VEC and conventional control was found to be 92.3% and 79.5%, respectively. Based on the expected turn-down capability of Houston's oxygen production faciilities, the simulations indicate that the VEC strategy will more than double the possible cost savings of the conventional control method.


2020 ◽  
Vol 07 ◽  
Author(s):  
Li Qiannan ◽  
Ling Yeqing ◽  
Zheng Hewen ◽  
Yang Zhi

: Manganese ore is an important metallurgical raw material that holds an important strategic position in the national economy of China. However, the grade of manganese ore in the country is mostly low, and the utilization efficiency of lowgrade manganese ore resources is low, which seriously restrict the healthy and stable development of China’s metallurgical industry. As a new green heating method, microwave is expected to address the problems of conventional methods and realize the effective utilization of low-grade manganese ore. In this paper, the research status of the microwave composite reduction of pyrolusite in recent years is reviewed. Microwave plays an important role in metallurgy, and it is the current direction pursued to improve the research intensity of microwave heating and extend it to actual industrial processes.


Sign in / Sign up

Export Citation Format

Share Document