Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli

Plasmid ◽  
2008 ◽  
Vol 59 (1) ◽  
pp. 1-10 ◽  
Author(s):  
David Šmajs ◽  
Michal Strouhal ◽  
Petra Matějková ◽  
Darina Čejková ◽  
Luciana Cursino ◽  
...  
2003 ◽  
Vol 69 (6) ◽  
pp. 3421-3426 ◽  
Author(s):  
Sang Yup Lee ◽  
Young Lee

ABSTRACT A heterologous metabolism of polyhydroxyalkanoate (PHA) biosynthesis and degradation was established in Escherichia coli by introducing the Ralstonia eutropha PHA biosynthesis operon along with the R. eutropha intracellular PHA depolymerase gene. By with this metabolically engineered E. coli, enantiomerically pure (R)-3-hydroxybutyric acid (R3HB) could be efficiently produced from glucose. By employing a two-plasmid system, developed as the PHA biosynthesis operon on a medium-copy-number plasmid and the PHA depolymerase gene on a high-copy-number plasmid, R3HB could be produced with a yield of 49.5% (85.6% of the maximum theoretical yield) from glucose. By integration of the PHA biosynthesis genes into the chromosome of E. coli and by introducing a plasmid containing the PHA depolymerase gene, R3HB could be produced without plasmid instability in the absence of antibiotics. This strategy can be used for the production of various enantiomerically pure (R)-hydroxycarboxylic acids from renewable resources.


1982 ◽  
Vol 150 (3) ◽  
pp. 1234-1243 ◽  
Author(s):  
W Firshein ◽  
P Strumph ◽  
P Benjamin ◽  
K Burnstein ◽  
J Kornacki

Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 657-666 ◽  
Author(s):  
Sang-Hyun Kim ◽  
Wenyi Jia ◽  
Valeria R. Parreira ◽  
Russell E. Bishop ◽  
Carlton L. Gyles

This study shows that lipid A of Escherichia coli O157 : H7 differs from that of E. coli K-12 in that it has a phosphoform at the C-1 position, which is distinctively modified by a phosphoethanolamine (PEtN) moiety, in addition to the diphosphoryl form. The pmrC gene responsible for the addition of PEtN to the lipid A of E. coli O157 : H7 was inactivated and the changes in lipid A profiles were assessed. The pmrC null mutant still produced PEtN-modified lipid A species, albeit in a reduced amount, indicating that PmrC was not the only enzyme that could be used to add PEtN to lipid A. Natural PEtN substitution was shown to be present in the lipid A of other serotypes of enterohaemorrhagic E. coli and absent from the lipid A of E. coli K-12. However, the cloned pmrC O157 gene in a high-copy-number plasmid generated a large amount of PEtN-substituted lipid A species in E. coli K-12. The occurrence of PEtN-substituted lipid A species was associated with a slight increase in the MICs of cationic peptide antibiotics, suggesting that the lipid A modification with PEtN would be beneficial for survival of E. coli O157 : H7 in certain environmental niches. However, PEtN substitution in the lipid A profiles was not detected when putative inner-membrane proteins (YhbX/YbiP/YijP/Ecf3) that show significant similarity with PmrC in amino acid sequence were expressed from high-copy-number plasmids in E. coli K-12. This suggests that these potential homologues are not responsible for the addition of PEtN to lipid A in the pmrC mutant of E. coli O157 : H7. When cells were treated with EDTA, the amount of palmitoylated lipid A from the cells carrying a high-copy-number plasmid clone of pmrC O157 that resulted in significant increase of PEtN substitution was unchanged compared with cells without PEtN substitution, suggesting that the PEtN moiety substituted in lipid A does not compensate for the loss of divalent cations required for bridging neighbouring lipid A molecules.


Gene ◽  
1982 ◽  
Vol 18 (3) ◽  
pp. 335-341 ◽  
Author(s):  
Neil G. Stoker ◽  
Neu F. Fairweathe ◽  
Brian G. Spratt

2005 ◽  
Vol 187 (17) ◽  
pp. 6094-6105 ◽  
Author(s):  
Urszula Zielenkiewicz ◽  
Piotr Cegłowski

ABSTRACT pSM19035 of the pathogenic bacterium Streptococcus pyogenes is a low-copy-number plasmid carrying erythromycin resistance, stably maintained in a broad range of gram-positive bacteria. We show here that the ω-ε-ζ operon of this plasmid constitutes a novel proteic plasmid addiction system in which the ε and ζ genes encode an antitoxin and toxin, respectively, while ω plays an autoregulatory function. Expression of toxin Zeta is bactericidal for the gram-positive Bacillus subtilis and bacteriostatic for the gram-negative Escherichia coli. The toxic effects of ζ gene expression in both bacterial species are counteracted by proper expression of ε. The ε-ζ toxin-antitoxin cassette stabilizes plasmids in E. coli less efficiently than in B. subtilis.


2018 ◽  
Vol 115 (13) ◽  
pp. 3458-3463 ◽  
Author(s):  
Andrzej Szewczak-Harris ◽  
Jan Löwe

Low copy-number plasmid pLS32 ofBacillus subtilissubsp.nattocontains a partitioning system that ensures segregation of plasmid copies during cell division. The partitioning locus comprises actin-like protein AlfA, adaptor protein AlfB, and the centromeric sequenceparN. Similar to the ParMRC partitioning system fromEscherichia coliplasmid R1, AlfA filaments form actin-like double helical filaments that arrange into an antiparallel bipolar spindle, which attaches its growing ends to sister plasmids through interactions with AlfB andparN. Because, compared with ParM and other actin-like proteins, AlfA is highly diverged in sequence, we determined the atomic structure of nonbundling AlfA filaments to 3.4-Å resolution by cryo-EM. The structure reveals how the deletion of subdomain IIB of the canonical actin fold has been accommodated by unique longitudinal and lateral contacts, while still enabling formation of left-handed, double helical, polar and staggered filaments that are architecturally similar to ParM. Through cryo-EM reconstruction of bundling AlfA filaments, we obtained a pseudoatomic model of AlfA doublets: the assembly of two filaments. The filaments are antiparallel, as required by the segregation mechanism, and exactly antiphasic with near eightfold helical symmetry, to enable efficient doublet formation. The structure of AlfA filaments and doublets shows, in atomic detail, how deletion of an entire domain of the actin fold is compensated by changes to all interfaces so that the required properties of polymerization, nucleotide hydrolysis, and antiparallel doublet formation are retained to fulfill the system’s biological raison d’être.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Mayokun Ajeigbe ◽  
Lewis Bingle

Microcin B17 (Mcb17) is a ribosomally synthesized and post-translationally modified peptide (RiPP), produced by Escherichia coli, that inhibits bacterial DNA gyrase in a similar way to quinolones. The Mcb17 operon, consisting of seven genes encoding biosynthetic and immunity/export functions, was originally found on a plasmid, pMccB17. This circular plasmid, previously known as pRYC17, was originally found in Escherichia coli strain LP17, isolated from the intestinal tract of a healthy newborn at Hospital La Paz, Spain and was transferred by conjugation to E. coli K-12 [Baquero et al. (1978) J. Bacteriol. 135: 342]. pMccB17 is a low copy number IncFII plasmid in the same incompatibility group as R100 and R1. Not much is known about this plasmid aside from the facts that it carries the Mcb17 operon, does not possess any conventional antibiotic resistance markers and its size was estimated to be approximately 70 kb. We extracted the plasmid from E. coli K-12 strain RYC1000 [pMccB17] and sequenced it twice using an Illumina short-read method, firstly together with the host bacterial chromosome, then plasmid DNA was purified and sequenced separately. PCR primers were designed to close the single remaining gap via Sanger sequencing. The resulting complete sequence has 83 predicted genes, initially identified by Prokka and subsequently manually reannotated using BLAST. Comparison to other IncFII plasmids shows a large proportion of shared genes, especially in the conjugative plasmid backbone. However, pMccB17 which is a MOBF12 plasmid lacks transposable elements and in addition to the Mcb17 operon, this plasmid carries 25 genes of unknown function.


2004 ◽  
Vol 47 (3) ◽  
pp. 329-338 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Paramasamy Gunasekaran

The sacB and sacC genes encoding levansucrase and extracellular sucrase respectively were independently subcloned in pBluescript (high copy number) and in Z. mobilis-E. coli shuttle vector, pZA22 (low copy number). The expression of these genes were compared under identical background of E. coli and Z. mobilis host. The level of sacB gene expression in E. coli was almost ten fold less than the expression of sacC gene, irrespective of the growth medium or the host strain. In Z. mobilis the expression of sacB and sacC genes was shown to be subject to carbon source dependent regulation. The transcript of sacB and sacC was three fold higher in cells grown on sucrose than in cells grown on glucose/fructose. Northern blot analysis revealed that the transcript levels of sacC was approximately 2-3 times higher than that of sacB. These results suggested that the expression of sacC gene was more pronounced than sacB.


Sign in / Sign up

Export Citation Format

Share Document