Co-ordinated regulation of miRNA and their target genes by CREs during salt stress in Oryza sativa (Rice)

Plant Gene ◽  
2021 ◽  
pp. 100323
Author(s):  
Srijan Haldar ◽  
Subhendu Bandyopadhyay
2021 ◽  
Vol 100 (2) ◽  
Author(s):  
Mostafa Ahmadizadeh ◽  
Nadali Babaeian-Jelodar ◽  
Ghasem Mohammadi-Nejad ◽  
Nadali Bagheri ◽  
Rakesh Kumar Singh

2021 ◽  
Vol 258-259 ◽  
pp. 153379
Author(s):  
Guochao Yan ◽  
Xiaoping Fan ◽  
Wanning Zheng ◽  
Zixiang Gao ◽  
Chang Yin ◽  
...  

2019 ◽  
Vol 11 (29) ◽  
pp. 65-84
Author(s):  
Seyedeh Minoo Mirarab Razi ◽  
Reza Shirzadian-Khorramabad ◽  
Hossein Sabouri ◽  
Babak Rabiei ◽  
Hossein Hosseini Moghadam ◽  
...  

2005 ◽  
Vol 24 (2) ◽  
pp. 153-158
Author(s):  
Myung-Hwa Baek ◽  
Jin-Hong Kim ◽  
Seung-Gon Wi ◽  
In-Jung Lee ◽  
Kyu-Seong Lee ◽  
...  

2019 ◽  
Vol 124 (6) ◽  
pp. 947-960 ◽  
Author(s):  
Yuan Hu Xuan ◽  
Vikranth Kumar ◽  
Xiao Han ◽  
Sung Hoon Kim ◽  
Jin Hee Jeong ◽  
...  

Abstract Background and Aims INDETERMINATE DOMAIN 10 (IDD10) is a key transcription factor gene that activates the expression of a large number of NH4+-responsive genes including AMMONIUM TRANSPORTER 1;2 (AMT1;2). Primary root growth of rice (Oryza sativa) idd10 mutants is hypersensitive to NH4+. The involvement of CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE (CIPK) genes in the action of IDD10 on NH4+-mediated root growth was investigated. Methods Quantitative reverse transcription–PCR was used to analyse NH4+- and IDD10-dependent expression of CIPK genes. IDD10-regulated CIPK target genes were identified using electrophoretic mobility shift assays, chromatin immunoprecipitation and transient transcription assays. Root growth rate, ammonium content and 15N uptake of cipk mutants were measured to determine their sensitivity to NH4+ and to compare these phenotypes with those of idd10. The genetic relationship between CIPK9 OX and idd10 was investigated by crosses between the CIPK9 and IDD10 lines. Key Results AMT1;2 was overexpressed in idd10 to determine whether NH4+-hypersensitive root growth of idd10 resulted from limitations in NH4+ uptake or from low cellular levels of NH4+. High NH4+ levels in idd10/AMT1;2 OX did not rescue the root growth defect. Next, the involvement of CIPK genes in NH4+-dependent root growth and interactions between IDD10 and CIPK genes was investigated. Molecular analysis revealed that IDD10 directly activated transcription of CIPK9 and CIPK14. Expression of CIPK8, 9, 14/15 and 23 was sensitive to exogenous NH4+. Further studies revealed that cipk9 and idd10 had almost identical NH4+-sensitive root phenotypes, including low efficiency of 15NH4+ uptake. Analysis of plants containing both idd10 and CIPK9 OX showed that CIPK9 OX could rescue the NH4+-dependent root growth defects of idd10. Conclusions CIPK9 was involved in NH4+-dependent root growth and appeared to act downstream of IDD10. This information will be useful in future explorations of NH4+ signalling in plants.


2020 ◽  
Vol 20 (4) ◽  
pp. 2059-2072 ◽  
Author(s):  
Faisal Nadeem ◽  
Muhammad Azhar ◽  
Muhammad Anwar-ul-Haq ◽  
Muhammad Sabir ◽  
Tayyaba Samreen ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Thapanee Samphumphuang ◽  
Kanyamin Polispitak ◽  
Panarat Thongpoem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document