scholarly journals Molecular characterization of Zn(II)2Cys6 cluster gene family and their association with pathogenicity of the onion basal rot pathogen, Fusarium oxysporum f. sp. cepae

Author(s):  
Bijayalaxmi Mahanty ◽  
Rukmini Mishra ◽  
Raj Kumar Joshi
1987 ◽  
Vol 206 (3) ◽  
pp. 465-474 ◽  
Author(s):  
Caroline Dean ◽  
Peter van den Elzen ◽  
Stanley Tamaki ◽  
Margaret Black ◽  
Pamela Dunsmuir ◽  
...  

Planta ◽  
2017 ◽  
Vol 247 (1) ◽  
pp. 229-253 ◽  
Author(s):  
Niti Yashvardhini ◽  
Saurav Bhattacharya ◽  
Shubho Chaudhuri ◽  
Dibyendu Narayan Sengupta

1996 ◽  
Vol 9 (2) ◽  
pp. 107-116
Author(s):  
Titima Tantikanjana ◽  
Mikhail E. Nasrallah ◽  
J. B. Nasrallah

2011 ◽  
Vol 12 (2) ◽  
pp. 47 ◽  
Author(s):  
V.K. Mandhare ◽  
G.P. Deshmukh ◽  
J.V. Patil ◽  
A.A. Kale

Vascular wilt caused by Fusarium oxysporum f.sp. ciceri (FOC) is considered as one of the major factors of low productivity in chickpea. The present study was conducted to determine the morphological, pathogenic and random amplified polymorphic DNA (RAPD) variability of twenty isolates of FOC collected from the Maharashtra State of India, along with four reference isolates corresponding to four known FOC races. Pathogenicity of each isolate was confirmed using the wilt susceptible chick-pea genotype JG-62. The mycelia of all the isolates were septate, hyaline and profusely branched. All the FOC isolates produced micro- and macro-conidia in pure culture within seven days after inoculation. Based on the abilities of the isolates to cause dis-ease on an international set of chickpea differentials and genetic variability estimated by the RAPD technique, these 24 isolates were grouped into two pathotypes, i.e. pathotype I and pathotype II.<br /><br />


Author(s):  
Viridiana López-Bautista ◽  
Gustavo Mora-Aguilera ◽  
María Alejandra Gutiérrez-Espinosa ◽  
Coral Mendoza-Ramos ◽  
Verónica Inés Martínez-Bustamante ◽  
...  

<p>La marchitez y pudrición seca del cogollo del agave (<em>Agave tequilana</em> var. azul) son enfermedades de alto impacto económico para este cultivo. En este trabajo se planteó determinar la implicación de <em>Fusarium</em> spp. en ambas enfermedades bajo un enfoque regional. Se colectaron muestras de raíz y suelo en 40 plantaciones comerciales ubicadas en 13 municipios de Los Altos Jalisco, importante región de cultivo de agave azul en México. De cada plantación de colecta se estimó carga de inóculo mediante un índice de <em>Fusarium</em> obtenido de unidades formadoras de colonias (<em>Fusarium</em> vs hongos totales) y se analizó su relación con pH y materia orgánica. Se obtuvieron 109 aislados caracterizados morfológicamente como <em>Fusarium</em> spp. de los cuales se seleccionaron 25 para identificación molecular con ITS y EF-1a. La selección consideró sintomatología, caracteres macro y microscópicos y prevalencia de tipologías de colonia observadas <em>in vitro</em> en medios Komada, Sabouraud, SNA y CLA. Los caracteres culturales y morfológicos evaluados fueron: coloración micelial, tamaño, forma y septación de macro y microconidios, y longitud y número de fiálides. Se asociaron cinco especies con marchitez y/o pudrición seca ubicadas en tres complejos filogenéticos: <em>F. oxysporum</em> del complejo de especies <em>Fusarium oxysporum</em> (FOSC) con 56% (46.2% suelo y 66.7% raíz) de representatividad regional; <em>F. solani, F. falciforme</em> y <em>Fusarium</em> sp. del complejo <em>Fusarium solani</em> (FSSC) (40%); y <em>Fusarium</em> sp. del complejo <em>Fusarium fujikuroi</em> (FFSC) (4%). MO y pH tuvieron correlación inversamente proporcional con Índice de <em>Fusarium</em> (<em>r2</em> = 0.68-0.70). Se postula que la marchitez y pudrición seca del cogollo de agave azul constituyen un síndrome en el cual se asocian y especializan parasíticamente diversas especies de <em>Fusarium</em>. Se encontró un aislado de los tres complejos de <em>Fusarium</em> asociados específicamente a cada tipo de síntoma y la combinación de ellos. La mayoría se asociaron a marchitez con predominancia de<em> F. oxysporum. </em>  </p><p> </p>


2020 ◽  
Author(s):  
Yinbo Ma ◽  
Sushil Satish Chhapekar ◽  
Lu Lu ◽  
Sangheon Oh ◽  
Sonam Singh ◽  
...  

Abstract Background: The nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes are important for plant development and disease resistance. Although genome-wide studies of NBS-encoding genes have been performed in several species, the evolution, structure, expression, and function of these genes remain unknown in radish (Raphanus sativus L.). A recently released draft R. sativus L. reference genome has facilitated the genome-wide identification and characterization of NBS-encoding genes in radish.Results: A total of 225 NBS-encoding genes were identified in the radish genome based on the essential NB-ARC domain through HMM search and Pfam database, with 202 mapped onto nine chromosomes and the remaining 23 localized on different scaffolds. According to a gene structure analysis, we identified 99 NBS-LRR-type genes and 126 partial NBS-encoding genes. Additionally, 80 and 19 genes respectively encoded an N-terminal Toll/interleukin-like domain and a coiled-coil domain. Furthermore, 72% of the 202 NBS-encoding genes were grouped in 48 clusters distributed in 24 crucifer blocks on chromosomes. The U block on chromosomes R02, R04, and R08 had the most NBS-encoding genes (48), followed by the R (24), D (23), E (23), and F (17) blocks. These clusters were mostly homogeneous, containing NBS-encoding genes derived from a recent common ancestor. Tandem (15 events) and segmental (20 events) duplications were revealed in the NBS family. Comparative evolutionary analyses of orthologous genes among Arabidopsis thaliana, Brassica rapa, and Brassica oleracea reflected the importance of the NBS-LRR gene family during evolution. Moreover, examinations of cis-elements identified 70 major elements involved in responses to methyl jasmonate, abscisic acid, auxin, and salicylic acid. According to RNA-seq expression analyses, 75 NBS-encoding genes contributed to the resistance of radish to Fusarium wilt. A quantitative real-time PCR analysis revealed that RsTNL03 (Rs093020) and RsTNL09 (Rs042580) expression positively regulates radish resistance to Fusarium oxysporum, in contrast to the negative regulatory role for RsTNL06 (Rs053740).Conclusions: The NBS-encoding gene structures, tandem and segmental duplications, synteny, and expression profiles in radish were elucidated for the first time and compared with those of other Brassicaceae family members (A. thaliana, B. oleracea, and B. rapa) to clarify the evolution of the NBS gene family. These results may be useful for functionally characterizing NBS-encoding genes in radish.


Sign in / Sign up

Export Citation Format

Share Document