Acute ethanol induces behavioral changes and alters c-fos expression in specific brain regions, including the mammillary body, in zebrafish

Author(s):  
Krishan Ariyasiri ◽  
Tae-Ik Choi ◽  
Robert Gerlai ◽  
Cheol-Hee Kim
1988 ◽  
Vol 30 (3) ◽  
pp. 769-773 ◽  
Author(s):  
Shirao Ishou ◽  
Tsuda Akira ◽  
Ida Yoshishige ◽  
Tsujimaru Shusaku ◽  
Satoh Hiromi ◽  
...  

1986 ◽  
Vol 40 ◽  
pp. 61
Author(s):  
Ishou Shirao ◽  
Masatoshi Tanaka ◽  
Akira Tsuda ◽  
Shusaku Tsujimaru ◽  
Hiromi Satoh ◽  
...  

Author(s):  
James Rice ◽  
Laurence Coutellier ◽  
Jeffrey L. Weiner ◽  
Chen Gu

Abstract Adolescent binge drinking represents a major public health challenge and can lead to persistent neurological and mental conditions, but the underlying pathogenic mechanisms remain poorly understood. Using a mouse model of adolescent binge ethanol treatment (ABET), we found that this treatment induced behavioral changes associated with demyelination in different brain regions. After ABET, adolescent mice exhibited anxiogenic behaviors with no change in locomotion on the elevated plus maze, and impaired spatial memory indicated by a significant reduction in spontaneous alternation in the Y maze test. Both effects persisted into adulthood. Anatomical studies further showed that ABET induced a significant reduction of parvalbumin-positive (PV+) GABAergic interneurons and myelin density in the hippocampus and medial prefrontal cortex (mPFC). While these deficits in PV+ interneurons and myelin persisted into early adulthood in the hippocampus, the myelin density recovered in the mPFC. Moreover, whereas ABET mainly damaged myelin of PV+ axons in the hippocampus, it primarily damaged myelin of PV-negative axons in the mPFC. Thus, our findings reveal that an adolescent binge alcohol treatment regimen disrupts spatial working memory, increases anxiety-like behaviors, and exerts unique temporal and spatial patterns of gray matter demyelination in the hippocampus and mPFC.


2007 ◽  
Vol 31 (7) ◽  
pp. 1259-1267 ◽  
Author(s):  
Mary Beth Wilkie ◽  
Joyce Besheer ◽  
Stephen P. Kelley ◽  
Sandeep Kumar ◽  
Todd K. O'Buckley ◽  
...  

2000 ◽  
Vol 278 (5) ◽  
pp. R1267-R1274 ◽  
Author(s):  
Colleen M. Novak ◽  
Laura Smale ◽  
Antonio A. Nunez

Most mammals show daily rhythms in sleep and wakefulness controlled by the primary circadian pacemaker, the suprachiasmatic nucleus (SCN). Regardless of whether a species is diurnal or nocturnal, neural activity in the SCN and expression of the immediate-early gene product Fos increases during the light phase of the cycle. This study investigated daily patterns of Fos expression in brain areas outside the SCN in the diurnal rodent Arvicanthis niloticus. We specifically focused on regions related to sleep and arousal in animals kept on a 12:12-h light-dark cycle and killed at 1 and 5 h after both lights-on and lights-off. The ventrolateral preoptic area (VLPO), which contained cells immunopositive for galanin, showed a rhythm in Fos expression with a peak at zeitgeber time (ZT) 17 (with lights-on at ZT 0). Fos expression in the paraventricular thalamic nucleus (PVT) increased during the morning (ZT 1) but not the evening activity peak of these animals. No rhythm in Fos expression was found in the centromedial thalamic nucleus (CMT), but Fos expression in the CMT and PVT was positively correlated. A rhythm in Fos expression in the ventral tuberomammillary nucleus (VTM) was 180° out of phase with the rhythm in the VLPO. Furthermore, Fos production in histamine-immunoreactive neurons of the VTM cells increased at the light-dark transitions when A. niloticus show peaks of activity. The difference in the timing of the sleep-wake cycle in diurnal and nocturnal mammals may be due to changes in the daily pattern of activity in brain regions important in sleep and wakefulness such as the VLPO and the VTM.


PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e20658 ◽  
Author(s):  
Harry Pantazopoulos ◽  
Hamid Dolatshad ◽  
Fred C. Davis

2014 ◽  
Vol 306 (5) ◽  
pp. R363-R373 ◽  
Author(s):  
Al-Shaimaa F. Ahmed ◽  
Li Dai ◽  
Winnie Ho ◽  
Alastair V. Ferguson ◽  
Keith A. Sharkey

The subfornical organ (SFO) is an important sensory circumventricular organ implicated in the regulation of fluid homeostasis and energy balance. We investigated whether the SFO is activated by the hormone cholecystokinin (CCK). CCK1 and CCK2 receptors were identified in the SFO by RT-PCR. Dissociated SFO neurons that responded to CCK (40/77), were mostly depolarized (9.2 ± 0.9 mV, 30/77), but some were hyperpolarized (−7.3 ± 1.1 mV, 10/77). We next examined the responses of SFO neurons in vivo to CCK (16 μg/kg ip), in the presence and absence of CCK1 or CCK2 receptor antagonists (devazepide; 600 μg/kg and L-365,260; 100 μg/kg, respectively), using the functional activation markers c-Fos and phosphorylated extracellular signal-related kinase (p-ERK). The nucleus of the solitary tract (NTS) served as a control for CCK-induced activity. There was a significant increase in c-Fos expression in the NTS (259.2 ± 20.8 neurons) compared with vehicle (47.5 ± 2.5). Similarly, in the SFO, c-Fos was expressed in 40.5 ± 10.6 neurons in CCK-treated compared with 6.6 ± 2.7 in vehicle-treated rats ( P < 0.01). Devazepide significantly reduced the effects of CCK in the NTS but not in SFO. L-365,260 blocked the effects of CCK in both brain regions. CCK increased the number of p-ERK neurons in NTS (27.0 ± 4.0) as well as SFO (18.0 ± 4.0), compared with vehicle (8.0 ± 2.6 and 4.3 ± 0.6, respectively; P < 0.05). Both devazepide and L-365,260 reduced CCK-induced p-ERK in NTS, but only L-365,260 reduced it in the SFO. In conclusion, the SFO represents a novel brain region at which circulating CCK may act via CCK2 receptors to influence central autonomic control.


2012 ◽  
Vol 302 (10) ◽  
pp. R1219-R1232 ◽  
Author(s):  
T. Luise King ◽  
Cheryl M. Heesch ◽  
Catharine G. Clark ◽  
David D. Kline ◽  
Eileen M. Hasser

Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular parameters in response to increasing severities of hypoxia. Retrograde tracers were used to label nTS PVN-projecting neurons and, in some rats, rostral ventrolateral medulla (RVLM)-projecting neurons. Immunohistochemistry was performed to identify nTS cells that were activated (Fos-immunoreactive, Fos-IR), catecholaminergic, and GABAergic following hypoxia. Conscious rats underwent 3 h normoxia ( n = 4, 21% O2) or acute hypoxia (12, 10, or 8% O2; n = 5 each). Hypoxia increased ventilation and the number of Fos-IR nTS cells (21%, 13 ± 2; 12%, 58 ± 4; 10%, 166 ± 22; 8%, 186 ± 6). Fos expression after 10% O2was similar whether arterial pressure was allowed to decrease (−13 ± 1 mmHg) or was held constant. The percentage of PVN-projecting cells activated was intensity dependent, but contrary to our hypothesis, PVN-projecting nTS cells exhibiting Fos-IR were found at all hypoxic intensities. Notably, at all intensities of hypoxia, ∼75% of the activated PVN-projecting nTS neurons were catecholaminergic. Compared with RVLM-projecting cells, a greater percentage of PVN-projecting nTS cells was activated by 10% O2. Data suggest that increasing hypoxic intensity activates nTS PVN-projecting cells, especially catecholaminergic, PVN-projecting neurons. The nTS to PVN catecholaminergic pathway may be critical even at lower levels of chemoreflex activation and more important to cardiorespiratory responses than previously considered.


Sign in / Sign up

Export Citation Format

Share Document