scholarly journals Forming of magnesium alloy microtubes in the fabrication of biodegradable stents

2014 ◽  
Vol 24 (5) ◽  
pp. 500-506 ◽  
Author(s):  
Lixiao Wang ◽  
Gang Fang ◽  
Lingyun Qian ◽  
Sander Leeflang ◽  
Jurek Duszczyk ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ali Gökhan Demir ◽  
Barbara Previtali ◽  
Carlo Alberto Biffi

The use of magnesium-alloy stents shows promise as a less intrusive solution for the treatment of cardiovascular pathologies as a result of the high biocompatibility of the material and its intrinsic dissolution in body fluids. However, in addition to requiring innovative solutions in material choice and design, these stents also require a greater understanding of the manufacturing process to achieve the desired quality with improved productivity. The present study demonstrates the manufacturing steps for the realisation of biodegradable stents in AZ31 magnesium alloy. These steps include laser microcutting with a Q-switched fibre laser for the generation of the stent mesh and subsequent chemical etching for the cleaning of kerf and surface finish. Specifically, for the laser microcutting step, inert and reactive gas cutting conditions were compared. The effect of chemical etching on the reduction in material thickness, as well as on spatter removal, was also evaluated. Prototype stents were produced, and the material composition and surface quality were characterised. The potentialities of combining nanosecond laser microcutting and chemical etching are shown and discussed.


2017 ◽  
Vol 11 (2) ◽  
Author(s):  
Enda L. Boland ◽  
James A. Grogan ◽  
Peter E. McHugh

Coronary stents made from degradable biomaterials such as magnesium alloy are an emerging technology in the treatment of coronary artery disease. Biodegradable stents provide mechanical support to the artery during the initial scaffolding period after which the artery will have remodeled. The subsequent resorption of the stent biomaterial by the body has potential to reduce the risk associated with long-term placement of these devices, such as in-stent restenosis, late stent thrombosis, and fatigue fracture. Computational modeling such as finite-element analysis has proven to be an extremely useful tool in the continued design and development of these medical devices. What is lacking in computational modeling literature is the representation of the active response of the arterial tissue in the weeks and months following stent implantation, i.e., neointimal remodeling. The phenomenon of neointimal remodeling is particularly interesting and significant in the case of biodegradable stents, when both stent degradation and neointimal remodeling can occur simultaneously, presenting the possibility of a mechanical interaction and transfer of load between the degrading stent and the remodeling artery. In this paper, a computational modeling framework is developed that combines magnesium alloy degradation and neointimal remodeling, which is capable of simulating both uniform (best case) and localized pitting (realistic) stent corrosion in a remodeling artery. The framework is used to evaluate the effects of the neointima on the mechanics of the stent, when the stent is undergoing uniform or pitting corrosion, and to assess the effects of the neointimal formation rate relative to the overall stent degradation rate (for both uniform and pitting conditions).


2013 ◽  
Vol 58 (2) ◽  
pp. 619-624 ◽  
Author(s):  
M. Szafarska ◽  
J. Iwaszko ◽  
K. Kudła ◽  
I. Łegowik

The main aim of the study was the evaluation of magnesium alloy surface treatment effectiveness using high-energy heat sources, i.e. a Yb-YAG Disk Laser and the GTAW method. The AZ91 and AM60 commercial magnesium alloys were subject to surface layer modification. Because of the physicochemical properties of the materials studied in case of the GTAW method, it was necessary to provide the welding stand with additional equipment. A novel two-torch set with torches operating in tandem was developed within the experiment. The effectiveness of specimen remelting using a laser and the GTAW method was verified based on macro- and microscopic examinations as well as in X-ray phase analysis and hardness measurements. In addition, the remelting parameters were optimised. The proposed treatment methodology enabled the achieving of the intended result and effective modification of a magnesium alloy surface layer.


2019 ◽  
Vol 9 (2) ◽  
pp. 182-191
Author(s):  
Akihiro Minami ◽  
Hirokazu Tamura ◽  
Hidetoshi Sakamoto ◽  
Yoshifumi Ohbuchi ◽  
Yasuo Marumo

2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document