scholarly journals In- vitro and in -vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications

2017 ◽  
Vol 136 ◽  
pp. 31-38 ◽  
Author(s):  
Saad B. Qasim ◽  
Shehriar Husain ◽  
Ying Huang ◽  
Maksym Pogorielov ◽  
Volodymyr Deineka ◽  
...  
Author(s):  
Kivilcim Buyukhatipoglu ◽  
Robert Chang ◽  
Wei Sun ◽  
Alisa Morss Clyne

Tissue engineering may require precise patterning of cells and bioactive components to recreate the complex, 3D architecture of native tissue. However, it is difficult to image and track cells and bioactive factors once they are incorporated into the tissue engineered construct. These bioactive factors and cells may also need to be moved during tissue growth in vitro or after implantation in vivo to achieve the desired tissue properties, or they may need to be removed entirely prior to implantation for biosafety concerns.


2005 ◽  
Vol 16 (11) ◽  
pp. 1017-1028 ◽  
Author(s):  
Ying Wan ◽  
Aixi Yu ◽  
Hua Wu ◽  
Zhaoxu Wang ◽  
Dijiang Wen

2015 ◽  
Vol 3 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Linhao Li ◽  
Yuna Qian ◽  
Chongwen Lin ◽  
Haibin Li ◽  
Chao Jiang ◽  
...  

Silk middle gland extracted sericin protein based electrospun nanofibrous scaffolds with excellent biocompatibility have been developed for tissue engineering applications.


2012 ◽  
Vol 512-515 ◽  
pp. 1821-1825
Author(s):  
Lin Zhang ◽  
Xue Min Cui ◽  
Qing Feng Zan ◽  
Li Min Dong ◽  
Chen Wang ◽  
...  

A novel microsphere scaffolds composed of chitosan and β-TCP containing vancomycin was designed and prepared. The β-TCP/chitosan composite microspheres were prepared by solid-in-water-in-oil (s/w/o) emulsion cross-linking method with or without pre-cross-linking process. The mode of vancomycin maintaining in the β-TCP/chitosan composite microspheres was detected by Fourier transform infrared spectroscopy (FTIR). The in vitro release curve of vancomycin in simulated body fluid (SBF) was estimated. The results revealed that the pre-cross-linking prepared microspheres possessed higher loading efficiency (LE) and encapsulation efficiency (EE) especially decreasing the previous burst mass of vancomycin in incipient release. These composite microspheres got excellent sphere and well surface roughness in morphology. Vancomycin was encapsulated in composite microspheres through absorption and cross-linking. While in-vitro release curves illustrated that vancomycin release depond on diffusing firstly and then on the degradation ratio later. The microspheres loading with vancomycin would be to restore bone defect, meanwhile to inhibit bacterium proliferation. These bioactive, degradable composite microspheres have potential applications in 3D tissue engineering of bone and other tissues in vitro and in vivo.


Author(s):  
Sung Pei Tsai ◽  
Chien Yang Hsieh ◽  
Chung Yu Hsieh ◽  
Yaw Nan Chang ◽  
Da Ming Wang ◽  
...  

2010 ◽  
Vol 16 (1) ◽  
pp. 343-353 ◽  
Author(s):  
João T. Oliveira ◽  
Tírcia C. Santos ◽  
Luís Martins ◽  
Ricardo Picciochi ◽  
Alexandra P. Marques ◽  
...  

2013 ◽  
Vol 113 ◽  
pp. 25-29 ◽  
Author(s):  
Nurul Syuhada Ibrahim ◽  
Genasan Krishnamurithy ◽  
Hanumantha Rao Balaji Raghavendran ◽  
Subramaniam Puvaneswary ◽  
Ng Wuey Min ◽  
...  

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohan Prasath Mani ◽  
Madeeha Sadia ◽  
Saravana Kumar Jaganathan ◽  
Ahmad Zahran Khudzari ◽  
Eko Supriyanto ◽  
...  

Abstract In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document