Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate

2017 ◽  
Vol 144 ◽  
pp. 62-69 ◽  
Author(s):  
Rong Yang ◽  
Bo Wang ◽  
Xiaofeng Han ◽  
Binbin Ma ◽  
Jinchun Li
2019 ◽  
Vol 803 ◽  
pp. 346-350
Author(s):  
Jessalyn C. Grumo ◽  
Lady Jaharah Y. Jabber ◽  
Arnold A. Lubguban ◽  
Rey Y. Capangpangan ◽  
Arnold C. Alguno

We report on the rigid polyurethane foam (RPUF) with varying amount of blowing agent. The effects of blowing agent in the formation of polyurethane will be characterized using scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. SEM images revealed that varying the amount of blowing agent will significantly change the surface morphology of the resulting RPUF. The average cell size of the RPUF increases with increasing amount of blowing agent. Moreover, FTIR results revealed the presence of functional group related to formation of urethane bonds such as N-H, C=O, C=N and C-O-C stretching suggesting that polyurethane foam was successfully synthesized. This simple and straightforward process of RPUF using water as blowing agent will be economical.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2140
Author(s):  
Guangxu Bo ◽  
Xiaoling Xu ◽  
Xiaoke Tian ◽  
Jiao Wu ◽  
Yunjun Yan

Rigid polyurethane foams (RPUFs) are widely used in many fields, but they are easy to burn and produce a lot of smoke, which seriously endangers the safety of people’s lives and property. In this study, tetraethyl(1,5–bis(bis(2–hydroxypropyl)amino)pentane–1,5–diyl)bis(phosphonate) (TBPBP), as a phosphorus–nitrogen–containing reactive–type flame retardant, was successfully synthesized and employed to enhance the flame retardancy of RPUFs, and silica aerogel (SA) powder was utilized to reduce harmful fumes. Castor oil–based rigid polyurethane foam containing SA powder and TBPBP was named RPUF–T45@SA20. Compared with neat RPUF, the obtained RPUF–T45@SA20 greatly improved with the compressive strength properties and the LOI value increased by 93.64% and 44.27%, respectively, and reached the V–0 rank of UL–94 testing. The total heat release (THR) and total smoke production (TSP) of RPUF–T45@SA20 were, respectively, reduced by 44.66% and 51.89% compared to those of the neat RPUF. A possible flame–retardant mechanism of RPUF–T45@SA20 was also proposed. This study suggested that RPUF incorporated with TBPBP and SA powder is a prosperous potential composite for fire and smoke safety as a building insulation material.


2018 ◽  
Vol 76 (7) ◽  
pp. 3753-3768 ◽  
Author(s):  
Rong Yang ◽  
Bo Wang ◽  
Liang Xu ◽  
Caixia Zhao ◽  
Xin Zhang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2756-2766
Author(s):  
Yi Zhang ◽  
Weiwei Yang

In this study, a highly effective flame retardant agent, called polybicyclopentaerythritol phosphate-O-4-imino-p-phenylmethane-4-imino-2-chloro-1,3,5-s-triazine (PEDMCD), has been prepared through a direct polycondensation reaction.


Sign in / Sign up

Export Citation Format

Share Document