scholarly journals Hydroxyl accessibility and dimensional changes of Scots pine sapwood affected by alterations in the cell wall ultrastructure during heat-treatment

2018 ◽  
Vol 152 ◽  
pp. 244-252 ◽  
Author(s):  
Michael Altgen ◽  
Wim Willems ◽  
Reza Hosseinpourpia ◽  
Lauri Rautkari
Holzforschung ◽  
2015 ◽  
Vol 69 (4) ◽  
pp. 501-507 ◽  
Author(s):  
Jan T. Bonarski ◽  
Girma Kifetew ◽  
Wiesław Olek

Abstract A hypothesis for explaining the differential anisotropic shrinkage behavior of wood has been proposed, and it was based on the differences in the cell wall ultrastructure. The starting point of the consideration is that wood shrinkage is governed by its chemical composition, ultrastructure, and gross anatomy. It is also well known that the transverse shrinkage anisotropy of earlywood (EW) is more pronounced than that of the latewood (LW). In the paper, the cell wall ultrastructure and shrinkage anisotropy has been related to each other, and to this purpose, a set of crystallographic texture descriptors was applied. The descriptors are based on X-ray diffraction (XRD) experiments conducted on matched EW samples from different growth rings of Scots pine. The range of the microfibril angle (MFA) was identified. The ratio of the maxima of inverse pole figures (IPFs) of both the tangential (T) and radial (R) directions was determined. The ratios quantify the inhomogeneity of the spatial arrangement of the ordered areas. The results of the study clearly indicate that the transverse shrinkage of wood is governed mostly by a specific ultrastructural organization of moderately organized cell wall compounds.


2019 ◽  
Vol 206 ◽  
pp. 48-56 ◽  
Author(s):  
Alain Bourmaud ◽  
David Siniscalco ◽  
Loïc Foucat ◽  
Camille Goudenhooft ◽  
Xavier Falourd ◽  
...  

IAWA Journal ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 645-672
Author(s):  
Lloyd A. Donaldson

ABSTRACTIn the last 100 years, major advances have been made in understanding wood cell wall ultrastructure in tracheids, fibres, vessels and parenchyma and its relationship with xylem function and wood properties. This review will focus on how the development of imaging techniques and their application to wood cell walls has led to an understanding of cell wall organisation and the relationship between micro and macro scale properties in wood and wood-based materials. Topics such as wood formation, wood chemistry and reaction wood have recently been reviewed elsewhere and are considered only briefly in this review. Two features of wood cell walls have dominated the literature; orientation and layering of cellulose which determines the longitudinal stiffness of wood, and the distribution (topochemistry) of lignin which determines compression strength and pulping properties.


Botany ◽  
2008 ◽  
Vol 86 (4) ◽  
pp. 385-397 ◽  
Author(s):  
Haley D.M. Wyatt ◽  
Neil W. Ashton ◽  
Tanya E.S. Dahms

The moss Physcomitrella patens (Hedw.) Bruch & Schimp. in B.S.G. serves as a nonvascular plant model system suitable for studying many plant developmental phenomena. The tip-growing filamentous protonemal stage of its life cycle exhibits polarized growth and various tropic responses. Conventional staining and light microscopy (LM) were used to provide the first direct evidence that protonemal cells of P. patens lack a cuticle. Atomic force microscopy (ATM) images reveal detailed surface structures identified by scanning electron microscopy (SEM). The cell wall ultrastructure is characterized by rounded protrusions that are uniformly distributed along each caulonemal filament, and longer fibrillar structures, which are disorganized at the apex, but become oriented in longitudinal arrays parallel to the growth axis in more proximal regions of caulonemal apical cells. The subapical cells are characterized by a polylamellated texture. There was no difference in gross surface ultrastructure between light-grown and dark-grown filaments, but the dimensions of the rounded protrusions at the apices of caulonemata cultured in the light and in darkness were significantly different. The convex and concave cell wall surfaces of a curved, gravitropically responding dark-grown caulonema appear structurally different. This investigation is the first to use AFM to probe the cell wall ultrastructure of a bryophyte. The data further elaborate a simple model of cell wall development in the caulonemata of P. patens that was proposed for other tip-growing filamentous plants.


Sign in / Sign up

Export Citation Format

Share Document