Using nanocapsules as building blocks to fabricate organic polymer nanofoam with ultra low thermal conductivity and high mechanical strength

Polymer ◽  
2012 ◽  
Vol 53 (25) ◽  
pp. 5699-5705 ◽  
Author(s):  
Yingwu Luo ◽  
Changhuai Ye
RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 5197-5204 ◽  
Author(s):  
Kang Guo ◽  
Zijun Hu ◽  
Huaihe Song ◽  
Xian Du ◽  
Liang Zhong ◽  
...  

SEM and TEM pictures show that GNSs can be well-dispersed in a carbon matrix. The resultant composite CAs exhibited high compression strength and extremely low thermal conductivity of 0.028 W m−1 K−1.


2011 ◽  
Vol 278 ◽  
pp. 312-320 ◽  
Author(s):  
Marcos Valério Ribeiro ◽  
André Luís Habib Bahia

Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 °C one can find the nickel base alloy Pyromet® 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet® 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev. and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev. unlike the uncoated tool which obtained its better results to 0.12 mm/rev.


2018 ◽  
Vol 6 (37) ◽  
pp. 18183-18190 ◽  
Author(s):  
Peng Mu ◽  
Wei Bai ◽  
Zheng Zhang ◽  
Jingxian He ◽  
Hanxue Sun ◽  
...  

We report the synthesis of elastomeric conjugated microporous polymer nanotube aerogels with exceptional mechanical strength, excellent porous features and low thermal conductivity, which show great potential for solar steam generation.


2019 ◽  
Vol 25 (2) ◽  
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE ◽  
ANA CASANDRA SEBE

In the work experimental results on the manufacture of glass foam with high mechanical strength from glass waste are presented. By replacing the usual conventional energy source with a nonconventional energy (electromagnetic waves) the heating efficiency allows a fast and economical manufacturing process. Calcium carbonate as a foaming agent and an addition of sodium silicate (aqueous solution) as a binder were used. By their physico-mechanical and morphological features (0.40-0.66 g/ cm<sup>3 </sup>the apparent density, 0.054-0113 W/ m·K the thermal conductivity, 2.2-6.3 MPa the compressive strength, below 1.2 % the water absorption and under 2 mm the pore size), the foams are appropriate for their use as replacer of existing similar building materials on the market.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25530-25541
Author(s):  
Ziqin Feng ◽  
Feng Hu ◽  
Leifeng Lv ◽  
Li Gao ◽  
Hailin Lu

Polyvinyl alcohol (PVA) is an organic polymer that is non-toxic, harmless to the human body, and has good biocompatibility. Polyethylene glycol (PEG) is a polymer that has good lubricity and compatibility. As a new coating material, PVA/PEG has good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document