scholarly journals Preparation of ultra-high mechanical strength wear-resistant carbon fiber textiles with a PVA/PEG coating

RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25530-25541
Author(s):  
Ziqin Feng ◽  
Feng Hu ◽  
Leifeng Lv ◽  
Li Gao ◽  
Hailin Lu

Polyvinyl alcohol (PVA) is an organic polymer that is non-toxic, harmless to the human body, and has good biocompatibility. Polyethylene glycol (PEG) is a polymer that has good lubricity and compatibility. As a new coating material, PVA/PEG has good mechanical properties.

2021 ◽  
Vol 7 (1) ◽  
pp. eabc5442
Author(s):  
Dianyu Dong ◽  
Caroline Tsao ◽  
Hsiang-Chieh Hung ◽  
Fanglian Yao ◽  
Chenjue Tang ◽  
...  

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.


Author(s):  
Weibing Teng ◽  
Joseph Cappello ◽  
Xiaoyi Wu

Silk may possess superior mechanical strength while its resilience is very poor. In contrast, elastin in human arteries is very soft but extremely durable with an estimated half-life of 70 years. By combing polypeptide sequences derived from native silk and elastin, we have produced a series of silk-elastin-like proteins (SELPs), which have displayed a set of outstanding properties such as good biocompatibility and controllable biodegradation rates [1]. In this study, we will examine the crystallization of the silk-like blocks and the crosslinking of the elastin-like blocks, as well as their influences on the mechanical behavior of SELPs. The ultimate goal of this study is to explore the potential of SELPs for applications in the engineering of load-bearing tissues such as arteries.


2015 ◽  
Vol 3 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Zhiyong Li ◽  
Yunlan Su ◽  
Baoquan Xie ◽  
Xianggui Liu ◽  
Xia Gao ◽  
...  

A novel physically linked double-network (DN) hydrogel was prepared by natural polymer KGM and synthetic polymer PAAm. The DN hydrogels exhibit good mechanical properties, cell adhesion properties, and can be freely shaped, making such hydrogels promising for tissue engineering scaffolds.


1990 ◽  
Vol 215 ◽  
Author(s):  
K. Nishii ◽  
M. Usui ◽  
T. Muraya ◽  
K. Kimura

Polymer blend technology is attractive from the standpoint of both science and industry, and many combinations have been studied. Recently, the polymer blends, including liquid crystalline polymer, have been especially worthy of notice, [1,2,3]. In order to obtain materials with a high mechanical strength and moldability for use in thin molded items, we chose polyamide (PA)-liquid crystalline polymer (LCP) blends. In this study, we first measured the mechanical properties, then studied the features of the polymer structure. We also examined the relationship between morphology and mechanical properties. As a result, we found that the mechanical properties of the blends depended largely on blend morphology, and that mechanical strength increased as blend compatibility increased. On the other hand, we also found that the blends showed compatible and microheterogeneous dispersion at less than 25 wt% LCP, while at more than 30 wt% LCP, blends tended to show twophase separation.


Author(s):  
Kaili Zhang ◽  
Ren'ai Li ◽  
Guangxue Chen ◽  
Yang Jimin ◽  
Junfei Tian ◽  
...  

Conductive elastomers (CEs)with strong mechanical properties have been fabricated and used in flexible electronics. However, the development of CEs with both super-high mechanical strength and extreme stretchability remains challenging. This...


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 972 ◽  
Author(s):  
Gang Li ◽  
Daohai Zhang ◽  
Shuhao Qin

Silver nano-particles (AgNPs)-filled antibacterial materials have been widely employed in the fields of biology and biomedicine. However, AgNPs have shown obvious cytotoxicity. Hence it is more reasonable to use silver chloride nanoparticles (AgCl NPs) to prepare antibacterial materials due to the slow release of silver ions created by AgCl NPs formed in the chitosan. In this experiment, a useful antibacterial hydrogel for skin repairation was prepared by exploring the relationship between AgCl NPs and cytotoxicity. It is worth noting that the crosslinked network structure was successfully obtained in an antibacterial AgCl/PVA (Polyvinyl alcohol)/PEG (Polyethylene glycol)/CS (Chitosan) hydrogel materials by the hydrothermal method. In detail, the dynamic particle size distribution of AgCl NPs was relatively uniform, which is analyzed by a dynamic light scattering (DLS). The internal structure of the lyophilized hydrogel showed obvious porous structure, indicating that the hydrogel had high water content. The result of X-ray photoelectron spectroscopy (XPS) confirmed the existence of a silver element. The release concentration of silver ions was analyzed by inductively coupled plasma (ICP) to study the effect of silver ions release concentration on the antibacterial activity and cytotoxicity of hydrogel. The results show that the lower concentration of silver ions can make the hydrogel have good antibacterial activity and low cytotoxicity. The bacteriostatic rate of the antibacterial hydrogel was over 90%. Simultaneously, the mechanical properties test shows that the hydrogel has good mechanical properties, which can be widely used as an antibacterial material.


2016 ◽  
Vol 712 ◽  
pp. 232-236
Author(s):  
Andrey V. Chumaevskii ◽  
Evgeny A. Kolubaev ◽  
Sergei Yu. Tarasov ◽  
Alexander A. Eliseev

Mechanical strength of carbon fiber reinforced composites made of thermoplastic-thermosetting polymer matrix reinforced by carbon fibers has been determined. High mechanical strength has been revealed in tensile and compression tests both along and across the fibers. Specificity of fracturing in fiber-thermoplastics-thermosetting composition has been revealed. The effect of fiber bundling type on fracturing has been addressed.


Sign in / Sign up

Export Citation Format

Share Document