Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications

Polymer ◽  
2022 ◽  
pp. 124513
Author(s):  
Jiachang Liu ◽  
Song Bao ◽  
Qiangjun Ling ◽  
Xin Fan ◽  
Haibin Gu
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3574
Author(s):  
Pejman Heidarian ◽  
Hossein Yousefi ◽  
Akif Kaynak ◽  
Mariana Paulino ◽  
Saleh Gharaie ◽  
...  

Electroconductive hydrogels with stimuli-free self-healing and self-recovery (SELF) properties and high mechanical strength for wearable strain sensors is an area of intensive research activity at the moment. Most electroconductive hydrogels, however, consist of static bonds for mechanical strength and dynamic bonds for SELF performance, presenting a challenge to improve both properties into one single hydrogel. An alternative strategy to successfully incorporate both properties into one system is via the use of stiff or rigid, yet dynamic nano-materials. In this work, a nano-hybrid modifier derived from nano-chitin coated with ferric ions and tannic acid (TA/Fe@ChNFs) is blended into a starch/polyvinyl alcohol/polyacrylic acid (St/PVA/PAA) hydrogel. It is hypothesized that the TA/Fe@ChNFs nanohybrid imparts both mechanical strength and stimuli-free SELF properties to the hydrogel via dynamic catecholato-metal coordination bonds. Additionally, the catechol groups of TA provide mussel-inspired adhesion properties to the hydrogel. Due to its electroconductivity, toughness, stimuli-free SELF properties, and self-adhesiveness, a prototype soft wearable strain sensor is created using this hydrogel and subsequently tested.


Author(s):  
Liangliang Xia ◽  
Ming Zhou ◽  
Hongjun Tu ◽  
wen Zeng ◽  
xiaoling Yang ◽  
...  

The preparation of room-temperature self-healing polymeric materials with good healing efficiency and high mechanical strength is challenging. Two processes are essential to realise the room-temperature self-healing of materials: (a) a...


2019 ◽  
Vol 3 (3) ◽  
pp. 464-471 ◽  
Author(s):  
Jing Cui ◽  
Zhe Ma ◽  
Li Pan ◽  
Chun-Hua An ◽  
Jing Liu ◽  
...  

Synergistic hard/soft gradient distribution and dynamic ionic interactions impart high mechanical strength, toughness, stretchability and tenacious self-healing ability to copolymers.


2016 ◽  
Vol 49 (19) ◽  
pp. 7442-7449 ◽  
Author(s):  
Cigdem Bilici ◽  
Volkan Can ◽  
Ulrich Nöchel ◽  
Marc Behl ◽  
Andreas Lendlein ◽  
...  

2020 ◽  
Vol 8 (7) ◽  
pp. 3667-3675 ◽  
Author(s):  
Siheng Li ◽  
Hongyu Pan ◽  
Yuting Wang ◽  
Junqi Sun

Hydrogel-based self-healing ionic skins possess high mechanical strength, excellent resilience, anti-freezing properties and high sensitivity and can heal fatigue and mechanical damage to restore the original sensing performance.


2018 ◽  
Vol 57 (29) ◽  
pp. 9008-9012 ◽  
Author(s):  
Zhifang Wang ◽  
Yipeng Ren ◽  
Ye Zhu ◽  
Lijing Hao ◽  
Yunhua Chen ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 937 ◽  
Author(s):  
Chunxiao Zheng ◽  
Yiying Yue ◽  
Lu Gan ◽  
Xinwu Xu ◽  
Changtong Mei ◽  
...  

Intrinsic self-healing and highly stretchable electro-conductive hydrogels demonstrate wide-ranging utilization in intelligent electronic skin. Herein, we propose a new class of strain sensors prepared by cellulose nanofibers (CNFs) and graphene (GN) co-incorporated poly (vinyl alcohol)-borax (GN-CNF@PVA) hydrogel. The borax can reversibly and dynamically associate with poly (vinyl alcohol) (PVA) and GN-CNF nanocomplexes as a cross-linking agent, providing a tough and flexible network with the hydrogels. CNFs act as a bio-template and dispersant to support GN to create homogeneous GN-CNF aqueous dispersion, endowing the GN-CNF@PVA gels with promoted mechanical flexibility, strength and good conductivity. The resulting composite gels have high stretchability (break-up elongation up to 1000%), excellent viscoelasticity (storage modulus up to 3.7 kPa), rapid self-healing ability (20 s) and high healing efficiency (97.7 ± 1.2%). Due to effective electric pathways provided by GN-CNF nanocomplexes, the strain sensors integrated by GN-CNF@PVA hydrogel with good responsiveness, stability and repeatability can efficiently identify and monitor the various human motions with the gauge factor (GF) of about 3.8, showing promising applications in the field of wearable sensing devices.


2021 ◽  
pp. 2100061
Author(s):  
Jinxin Huang ◽  
Chengwei Wu ◽  
Xiaogang Yu ◽  
Heng Li ◽  
Shuaiwen Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document