High-performance UV-curable epoxy acrylate nanocomposite coatings reinforced with aramid nanofibers

2022 ◽  
Vol 163 ◽  
pp. 106631
Author(s):  
Ying Wang ◽  
Rongjun Qu ◽  
Yuankai Pan ◽  
Yuexin Luo ◽  
Ying Zhang ◽  
...  
2012 ◽  
Vol 74 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Ping Liu ◽  
Aijuan Gu ◽  
Guozheng Liang ◽  
Qingbao Guan ◽  
Li Yuan

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2165
Author(s):  
Jijun Tang ◽  
Jinshuai Zhang ◽  
Jianyu Lu ◽  
Jia Huang ◽  
Fei Zhang ◽  
...  

Novel oil-based epoxy acrylate (EA)-like prepolymers were synthesized via the ring-opening reaction of epoxidized plant oils with a new unsaturated carboxyl acid precursor (MAAMA) synthesized by reacting maleic anhydride (MA) with methallyl alcohol (MAA). Since the employed epoxidized oils including epoxidized soybean oil (ESO), epoxidized rubber seed oil (ERSO), and epoxidized wilsoniana seed oil (EWSO) possessed epoxy values of 7.34–4.38%, the obtained epoxy acrylate (EA)-like prepolymers (MMESO, MMERSO, and MMEWSO) indicated a C=C functionality of 7.81–4.40 per triglyceride. Furthermore, effects of the C=C functionality and the addition of hydroxyethyl methacrylate (HEMA) diluent on the ultimate properties of the resulting UV-cured EA-like materials were investigated and compared with those of commercially available acrylated ESO (AESO) resins. As the C=C functionality increased, the storage modulus at 25 °C (E’25), glass transition temperature (Tg), 5% weight–loss temperature (T5), tensile strength and modulus (σ and E), and hardness of the coating for both the pure EA and EA/HEMA resins increased significantly as well. These properties indicated similar trends when comparing the EA materials with 30% of HEMA with those pure EA materials. Specially, although ERSO had a clearly lower epoxy value that ESO, both the UV-cured pure MMERSO and MMERSO/HEMA materials showed much better E’25, Tg, σ, and E than their AESO counterparts, indicating that the MAAMA modification of epoxidized plant oils was much more effective than the modification of acrylic acid to achieve high-performance oil-based epoxy acrylate resins.


2018 ◽  
Vol 6 (7) ◽  
pp. 8340-8349 ◽  
Author(s):  
Qiong Wu ◽  
Yun Hu ◽  
Jijun Tang ◽  
Jing Zhang ◽  
Cuina Wang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 3025-3031 ◽  
Author(s):  
Siyu Li ◽  
Shuilai Qiu ◽  
Bin Yu ◽  
Gang Tang ◽  
Weiyi Xing ◽  
...  

This study presents an efficient method of preparing functionalized poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) nanotube reinforced UV-curable materials.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


2006 ◽  
Vol 55 (3) ◽  
pp. 284-290 ◽  
Author(s):  
Linda Fogelström ◽  
Per Antoni ◽  
Eva Malmström ◽  
Anders Hult

2021 ◽  
Vol 28 (10) ◽  
Author(s):  
Pundalik Mali ◽  
Narendra Sonawane ◽  
Vikas Patil ◽  
Ravi Mawale ◽  
Nilesh Pawar

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Yaling Da ◽  
Jianxing Liu ◽  
Zixian Gao ◽  
Xiangxin Xue

In this work, a series of epoxy acrylate (EA)/mica composite coatings were synthesized through introducing mica powders of different particle size into epoxy acrylate coatings and using an ultraviolet (UV) curing technique to investigate the influence of mica particle size on the coatings. Mica powders of different particle sizes were obtained by ball-milling for 4, 8, 12, 16, and 20 h with a planetary high-energy ball mill. The particle size and morphologies of ball-milled mica powders were characterized by laser particle size analyzer and scanning electron microscopy (SEM). The results indicated that planetary ball-milling reduced the particle size of mica powders effectively. Mica powders that were un-ball-milled and ball-milled were added into the epoxy acrylate matrix by a blending method to synthesize the organic-inorganic UV curable coatings. The optical photographs of the coatings showed greater stability of liquid mixtures with smaller particle size fillers. The chemical structures of EA/mica composite coatings were investigated by Fourier transform infrared spectroscopy (FTIR), and the conversion rate of C=C bonds was calculated. The results indicated that the C=C conversion of coatings with mica powders of smaller particle sizes was higher. Tests of mechanical properties and tests using electrochemical impedance spectroscopy (EIS) showed that pencil hardness, impact resistance, and coating resistance were improved due to the reduction of mica powders particle size.


Sign in / Sign up

Export Citation Format

Share Document