Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation

2017 ◽  
Vol 128 ◽  
pp. 83-97 ◽  
Author(s):  
H. Kursat Celik
2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


Author(s):  
Aaron D. Gupta ◽  
Henry L. Wisniewski

Abstract Light combat vehicles are playing an important support role for both troops and other heavily armored combat vehicles. As such, they have a much greater risk than in previous roles of being subjected to transient loads such as impact and overpressure loads. Propagation of ballistic shock from an impacted region to the critical locations and attachment points for secondary systems can cause damage and misalignment to sensitive equipments contributing to malfunction and reduction of vehicle performance. Accuracy of determination of dynamic response of these vehicles is directly dependent on the degree of refinement of the generated model and how well the model incorporates the essential features of the vehicle and correlates to its important characteristics without being over-burdened by non-essential details. Additionally, response of nonlinear components of the vehicle in high frequency regime may influence the overall global response of the vehicle. As a result, hatch openings and access door cutouts with unsymmetric locations may have to be incorporated in the finite element model to allow fair comparison with first order experiments involving a stripped vehicle hull. The current study is an attempt to assess the influence of multiple rectangular cutouts on the overall transient response of a vehicle hull subjected to a side-on impact load.


2020 ◽  
Author(s):  
Oluwaseyi Aliu ◽  
Hamzah Sakidin ◽  
Jalal foroozesh ◽  
Surajudeen Sikiru

Sign in / Sign up

Export Citation Format

Share Document