Ethylene response factors regulate ethylene biosynthesis and cell wall modification in persimmon (Diospyros kaki L.) fruit during ripening

2020 ◽  
Vol 168 ◽  
pp. 111255 ◽  
Author(s):  
Yiheng He ◽  
Jie Xue ◽  
Huan Li ◽  
Shoukun Han ◽  
Jianqing Jiao ◽  
...  
2013 ◽  
Vol 64 (8) ◽  
pp. 2499-2510 ◽  
Author(s):  
Yun-yi Xiao ◽  
Jian-ye Chen ◽  
Jiang-fei Kuang ◽  
Wei Shan ◽  
Hui Xie ◽  
...  

2014 ◽  
Vol 166 (2) ◽  
pp. 1022-1032 ◽  
Author(s):  
N. M.-d. la Rosa ◽  
B. Sotillo ◽  
P. Miskolczi ◽  
D. J. Gibbs ◽  
J. Vicente ◽  
...  

Plant Science ◽  
2018 ◽  
Vol 274 ◽  
pp. 137-145 ◽  
Author(s):  
Imen Klay ◽  
Sandra Gouia ◽  
Mingchun Liu ◽  
Isabelle Mila ◽  
Habib Khoudi ◽  
...  

2016 ◽  
Vol 199 ◽  
pp. 209-215 ◽  
Author(s):  
Ai-di Zhang ◽  
Xiong Hu ◽  
Sheng Kuang ◽  
Hang Ge ◽  
Xue-ren Yin ◽  
...  

2015 ◽  
Vol 169 (1) ◽  
pp. 166-179 ◽  
Author(s):  
Marieke Dubois ◽  
Lisa Van den Broeck ◽  
Hannes Claeys ◽  
Kaatje Van Vlierberghe ◽  
Minami Matsui ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123618 ◽  
Author(s):  
Riza-Arief Putranto ◽  
Cuifang Duan ◽  
Kuswanhadi ◽  
Tetty Chaidamsari ◽  
Maryannick Rio ◽  
...  

2016 ◽  
Author(s):  
Mark D. White ◽  
Maria Klecker ◽  
Richard J. Hopkinson ◽  
Daan Weits ◽  
Carolin Mueller ◽  
...  

AbstractCrop yield loss due to flooding is a threat to food security. Submergence-induced hypoxia in plants results in stabilisation of group VII ETHYLENE RESPONSE FACTORS (ERF-VIIs), which aid survival under these adverse conditions. ERF-VII stability is controlled by the N-end rule pathway, which proposes that ERF-VII N-terminal cysteine oxidation in normoxia enables arginylation followed by proteasomal degradation. The PLANT CYSTEINE OXIDASEs (PCOs) have been identified as catalysts of this oxidation. ERF-VII stabilisation in hypoxia presumably arises from reduced PCO activity. We directly demonstrate that PCO dioxygenase activity produces Cys-sulfinic acid at the N-terminus of an ERF-VII peptide, which then undergoes efficient arginylation by an arginyl transferase (ATE1). This is the first molecular evidence showing N-terminal Cys-sulfinic acid formation and arginylation by N-end rule pathway components, and the first ATE1 substrate in plants. The PCOs and ATE1 may be viable intervention targets to stabilise N-end rule substrates, including ERF-VIIs to enhance submergence tolerance in agronomy.


Sign in / Sign up

Export Citation Format

Share Document