Experimental determination of residual stress in silicon nitride diffusion bonds obtained by high-energy X-ray diffraction

2004 ◽  
Vol 148 (1) ◽  
pp. 60-63 ◽  
Author(s):  
M. Vila ◽  
M.L. Martínez ◽  
C. Prieto ◽  
P. Miranzo ◽  
M.I. Osendi ◽  
...  
1990 ◽  
Vol 5 (3) ◽  
pp. 121-124 ◽  
Author(s):  
David J. Devlin ◽  
Kamal E. Amin

AbstractThe relative intensities ratios for the determination of the relative amounts of alpha and beta phases in silicon nitride and the relative amounts of delta yttrium disilicate (Y2Si2O7) and nitrogen apatite [Y5(SiO4)3N] are reported. These constants were determined using an iterative method applicable when the pure phases are not easily prepared. In addition, a calibration curve was obtained for the quantitative measurement of free silicon in silicon nitride over the range 0 to 0.3% by weight of Si.


1988 ◽  
Vol 142 ◽  
Author(s):  
John F. Porter ◽  
Dan O. Morehouse ◽  
Mike Brauss ◽  
Robert R. Hosbons ◽  
John H. Root ◽  
...  

AbstractStudies have been ongoing at Defence Research Establishment Atlantic on the evaluation of non-destructive techniques for residual stress determination in structures. These techniques have included neutron diffraction, x-ray diffraction and blind-hole drilling. In conjunction with these studies, the applicability of these procedures to aid in metallurgical and failure analysis investigations has been explored. The x-ray diffraction technique was applied to investigate the failure mechanism in several bent turbo blower rotor shafts. All examinations had to be non-destructive in nature as the shafts were considered repairable. It was determined that residual stress profiles existed in the distorted shafts which strongly indicated the presence of martensitic microstuctures. These microstructures are considered unacceptable for these shafts due to the potential for cracking or in-service residual stress relaxation which could lead to future shaft distortion.


2008 ◽  
Vol 23 (2) ◽  
pp. 189-189
Author(s):  
P. J. Bouchard ◽  
M. Turski ◽  
L. Edwards

2016 ◽  
Vol 368 ◽  
pp. 99-102
Author(s):  
Lukáš Zuzánek ◽  
Ondřej Řidký ◽  
Nikolaj Ganev ◽  
Kamil Kolařík

The basic principle of the X-ray diffraction analysis is based on the determination of components of residual stresses. They are determined on the basis of the change in the distance between atomic planes. The method is limited by a relatively small depth in which the X-ray beam penetrates into the analysed materials. For determination of residual stresses in the surface layer the X-ray diffraction and electrolytic polishing has to be combined. The article is deals with the determination of residual stress and real material structure of a laser-welded steel sample with an oxide surface layer. This surface layer is created during the rolling and it prevents the material from its corrosion. Before the X-ray diffraction analysis can be performed, this surface layer has to be removed. This surface layer cannot be removed with the help of electrolytic polishing and, therefore, it has to be removed mechanically. This mechanical procedure creates “technological” residual stress in the surface layer. This additional residual stress is removed by the electrolytic polishing in the depth between 20 and 80 μm. Finally, the real structure and residual stresses can be determined by using the X-ray diffraction techniques.


2006 ◽  
Vol 39 (6) ◽  
pp. 850-855 ◽  
Author(s):  
E. MacA. Gray ◽  
D. J. Cookson ◽  
T. P. Blach

A pressure cell designed for high-energy X-ray diffraction in transmission mode is described. The cell is intended for use at temperatures up to 573 K with samples that are large enough to permit the real-time determination of the amount of absorbed gas by measuring the gas pressure. The design is driven by the need to ensure that the sample temperature is constant and uniform, despite the heat flow accompanying the reaction between the gas and the sample. The use of the cell is illustrated by its application to elucidating the hydriding phase transformation in the LaNi5–H2system.


2017 ◽  
Vol 29 (26) ◽  
pp. 264001 ◽  
Author(s):  
A Koc ◽  
M Reinhardt ◽  
A von Reppert ◽  
M Rössle ◽  
W Leitenberger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document